K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

Ta so sánh các số hạng

=> Dãy số từ lớn -> bé

=> \(\frac{1}{3}< \frac{1}{2}\)

Nên tất cả các số phía sau đều bé hơn \(\frac{1}{2}\)

1 tháng 9 2017

Bài 1: 

Ta thấy: 1 + 2 = 3                     3 + 5 = 8

2 + 3 = 5                     5 + 8 = 13

Dãy số trên được lập theo quy luật sau: Kể từ số hạng thứ 3 trở đi mỗi số hạng bằng tổng của hai số hạng đứng liền trước nó.

Ba số hạng tiếp theo là:     21 + 34 = 55;       34 + 55 = 89;      55 + 89 = 144

Vậy dãy số được viết đầy đủ là:          1, 2, 3, 5, 8, 13, 34, 55, 89, 144

Bài 2: 

Ta nhận thấy:         8 = 1 + 3 + 4                            27 = 4+ 8 + 15

15 = 3 + 4 + 8

Từ đó ta rút ra được quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.

Viết  tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 8, 15, 27, 50, 92, 169.

Bài 3: 

Giải:

a). Ta nhận xét :

          Số hạng thứ 10 là   :  1024 = 512 x 2

Số hạng thứ 9 là     :  512  = 256 x 2

Số hạng thứ 8 là     :  256  = 128 x 2

Số hạng thứ 7 là     :  128  =  64 x 2

……………………………..

Từ đó ta suy luận ra quy luật của dãy số này là: mỗi số hạng của dãy số gấp đôi số hạng đứng liền trước đó.

Vậy số hạng đầu tiên của dãy là: 1 x 2 = 2.

b). Ta nhận xét :

Số hạng thứ 10 là   : 110 = 11 x 10

Số hạng thứ 9 là     :  99  = 11 x 9

Số hạng thứ 8 là     :  88  = 11 x 8

Số hạng thứ 7 là     :  77  = 11 x 7

…………………………..

Từ đó ta suy luận ra quy luật của dãy số là: Mỗi số hạng bằng số thứ tự của số hạng ấy nhân với 11.

Vậy số hạng đầu tiên của dãy là : 1 x 11 = 11.

1 tháng 9 2017

bài 1:

các số đó là : 55, 89, 144

bài 2 :

đề bài sai, mk nghĩ thế ( mong online math đừng trừ điểm nhé )

bài 3 :

a, nhận xét :

ta thấy : số hạng thứ 10 = 1024 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 10 số 2 )

              số hạng thứ 9  = 512 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 9 số 2 )

tương tự, ta có :

             số hạng thứ 8 = 8 số 2 nhân với nhau

             số hạng thứ 7 = 7 số 2 nhân với nhau

=> số hạng thứ 1 = 2

b, gọi số hạng đầu tiên là x, ta có :

( 110 - x ) : 11 + 1 = 10 ( theo công thức tìm số số hạng )

110 - x = ( 10 - 1 ) . 11

110 - x = 99

        x = 110 - 99

        x = 11

vậy số hạng đầu tiên của dãy là 11

kick mk nha

thank you very much

15 tháng 6 2021

Số hạng thứ 99 của dãy là 1/1/9999 nhé bạn

Học tốt!

15 tháng 6 2021

số hạng thứ 99 của dãy là 1/1/9999 nhé🍣🍱🍖🍗🥙🍙🍘🌭🥓🍕🍟🍝🥘🌮🌯💚💛💜💙🖤

28 tháng 3 2022

6 số hạng???

28 tháng 3 2022

đúng

tự nghĩ ra 2 số hạng còn lại

6 tháng 6 2017

Viết lại dãy số trên dười dạng :\(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};...\)

Khi đó, số hạng số 98 là  \(\frac{99^2}{98.100}\)

Ta có : A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{99^2}{98.100}\)

A = \(\frac{\left(2.3.4....99\right)^2}{\left(1.2.3....98\right).\left(3.4.5....100\right)}\)

A =\(\frac{99.2}{1.100}\)

A = \(\frac{99}{50}\)

 Vậy tích của 98 số dầu tiên của dãy số trên là \(\frac{99}{50}\)

12 tháng 1 2019

Ta có:

\(1\frac{1}{3}=\frac{4}{3}=\frac{2^2}{1.3}\)

\(1\frac{1}{8}=\frac{9}{8}=\frac{3^2}{2.4}\)

\(1\frac{1}{15}=\frac{16}{15}=\frac{4^2}{3.5}\)

=> Số thứ 98 của dãy là \(\frac{99^2}{98.100}\)

=> Tích của 98 số đầu tiên trong dãy đã cho là:

\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{99^2}{98.100}\)

\(=\frac{2.3.4.....99}{1.2.3.....98}.\frac{2.3.4.....99}{3.4.5.....100}\)

\(=\frac{99}{1}.\frac{2}{100}=\frac{99}{50}\)

17 tháng 11 2023

Tổng các số đó là:

\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{399}\)

\(=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+...+\dfrac{1}{19\times21}\)

\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{19\times21}\right)\)

\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)

\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{21}\right)\)

\(=\dfrac{1}{2}\times\dfrac{20}{21}\)

\(=\dfrac{10}{21}\)

17 tháng 11 2023

A = \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) +...+

A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\)\(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\)+...+

Xét dãy số 1; 3; 5; 7;...; Đây là dãy số cách đều với khoảng cách là

        3 - 1 = 2

Số thứ 10 của dãy số trên là 2 x (10 - 1) + 1  = 19

Vậy tổng của mười phân số đầu tiên của tổng A là:

         A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\) +....+ \(\dfrac{1}{19.21}\)

         A = \(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\) +...+ \(\dfrac{1}{19.21}\)

        A = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\)+...+ \(\dfrac{2}{19.21}\))

       A = \(\dfrac{1}{2}\). (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ...+ \(\dfrac{1}{19}\) - \(\dfrac{1}{21}\)

       A = \(\dfrac{1}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{21}\))

      A = \(\dfrac{1}{2}\)\(\dfrac{20}{21}\)

      A = \(\dfrac{10}{21}\)