x2+y2+z2≥xy+yz+xz

2) a2+b2+c2+3≥2(a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

1)   Áp dụng Cô-si ta có:

\(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\left(đpcm\right)\)

21 tháng 10 2017

đăngg nhiều vậy linh, mà  đã làm đến đề đó rồi cơ à chăm thế

AH
Akai Haruma
Giáo viên
22 tháng 7 2017

Bài 1:

Biến đổi tương đương thôi:

\((ac+bd)^2+(ad-bc)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(a^2+b^2)(c^2+d^2)\)

Ta có đpcm

Bài 2: Áp dụng kết quả bài 1:

\((a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\geq (ac+bd)^2\) do \((ad-bc)^2\geq 0\)

Dấu bằng xảy ra khi \(ad=bc\Leftrightarrow \frac{a}{c}=\frac{b}{d}\)