K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) d là tiếp tuyến của (O)

b) d là cát tuyến của (O)

16 tháng 10 2016

Chị vào http://s1.timtailieu.vn/2cc751c17fa866ad498152b45b1493f7/swf/2014/03/23/nguyen_li_dirichle.dgrc99cYGv.swf  bài tập chon lọc 5 trang 11 nhé

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

18 tháng 11 2024

d) Gọi I là trung điểm BC,AI cắt EF tại K.H là hình chiếu vuông góc của K  trên BC. Chứng minh: AH luôn đi qua một điểm cố định

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.a) Chứng minh tam giác ACE vuông cânb) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng Bài 2:Đường tròn tâm O và một dây AB của đường...
Đọc tiếp

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.

a) Chứng minh tam giác ACE vuông cân

b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?

c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng 

Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:

a) Góc BED = góc DAE

b) DE2 = DA.DB

Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD

 

0
27 tháng 10 2017

O B C K I A H

a) Xét tam giác vuông ABO có đường cao BK, áp dụng hệ thức lượng trong tam giác ta có: 

\(OB^2=OK.OA\Rightarrow5^2=OK.10\Rightarrow OK=2,5\left(cm\right)\)

b) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.

Vậy thì \(\widehat{BOA}=\widehat{COA}\)

Suy ra \(\Delta ABO=\Delta ACO\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

Vậy nên AC là tiếp tuyến của đường tròn (O).

c) Ta thấy ngay \(\Delta KOI\sim\Delta HOA\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OK}{OH}\Rightarrow OI=\frac{OK.OA}{OH}\)

Xét tam giac vuông ABO có BK là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(OK.OA=OB^2=R^2\) không đổi. Lại có OH cũng không đổi (bằng khoảng cách từ O tới đường thẳng xy)

Vậy nên \(OI=\frac{R^2}{OH}\) không đổi.

Vậy khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.