Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`= 0,3 . (2003^2000 . 2003^3 - 1997^1996 .1997)`
`=0,3 . (...1 xx ...7 - ...1 xx ...7)`
`= 0,3 . (...7 - ...7)`
`= 0,3 xx ...0`
`= 0`
2003^1 tận cùng là 3
2003^2 ....................9
2003^3 ....................7
2003^4 ....................1 (vì 9^2 = 81)
2003^5 ....................3
Vậy 2003^(4k+m) và 2003^m có chữ số tận cùng giống nhau (m, k là stn)
---> 2003^2003 = 2003^(4.500 + 3) tận cùng là 7 (*)
Tương tự :
1997^1 tận cùng là 7
1997^2 ....................9
1997^3 ....................3
1997^4 ....................1
---> 1997^1997 = 1997^(499.4 + 1) tận cùng là 7 (**)
(*),(**) ---> 2003^2003 - 1997^1997 tận cùng là 0, tức là bội của 10
---> 0,3 (2003^2003 - 1997^1997) là số tự nhiên.
=0,3.(2003^2000.2003^3-1997^1996.1997)
=0,3.[2003^4.500.(....7)-1997^4.499.(.....7)]
=0,3.[(....1).(....7)-(....1).(.....7)
=0,3.[(....7)-(.....7)]
=0,3.(.....0)
=......3
- xét dãy số gom 2002 số hạng sau :
2003, 2003.... 2003 , 2003 ... 2003
2002 lan 2003
chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]
có 2002 phép chia nên theo nguyên tắc dirichlet phải có ít nhất 2 số có cùng số dư khi chia 2002
giả sử 2 số đó là am và an [m,n N]; 1< = m
voi am = 2003 2003... 2003; an = 2003 2003 ... 2003
ta có :[an- am] chia het cho 2002
hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002
vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002
k mk nha
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
Khi chia một số cho 2002 có tất cả 2002 số dư từ 0 đến 2001;
Xét dãy gồm 2003 số: 2003; 20032003; 200320032003, ...;200320032003...(gồm 2003 số 2003). khi chia các số trong dãy trên cho 2002 thì theo N.L Dirichle có ít nhất hai số chia cho 2002 có cùng số dư, nên hiệu của chúng chia hết cho 2002. Gọi hai số đó là 20032003...2003(gồm m số 2003) và 20032003...2003(gồm n số 2003), giả sử m<n, ta có:
20032003...2003(gồm n số 2003) - 20032003...2003(gồm m số 2003) Chia hết cho 2002
hay 20032003...200300...0(gồm n-m số 2003 và m số 0) chia hết cho 2002. Vậy, tốn tại số có dạng 20032003...200300...0 chia hết cho 2002
Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : M = a x b y c z . . . Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó M = a 2 x ' b 2 y ' c 2 z ' . . . = ( a x ' b y ' c z ' ) 2 . Điều này chính tỏ M là một số chính phương.
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất một ước là 1 , là số lẻ ; a = 1 = 1\(^{^2}\), là số chính phương , thỏa mãn đề bài
+ Nếu a > 1 => x\(^y\) . z\(^{^k}\)... ( x , z ,.. là các số nguyên tố ; y , k ,... là các số tự nhiên khác 0 )
=> Số ước của a là : ( y + 1 ) . ( k + 1 ) ... là số lẻ
=> y + 1 là số lẻ ; k + 1 là số lẻ ; ....
=> y chẵn ; k chẵn ; ....
=> x\(^y\) ; z\(^k\) ; .... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Chứng minh một số tự nhiên khác 0 có số lượng ước là một số lẻ thì số tự nhiên đó là một số chính phương
\(0,3\left(2003^{2003}-1997^{1997}\right)=\frac{3.\left(2003^{2003}-1997^{1997}\right)}{10}\)
\(2003^4=1\left(mod1\right)\Rightarrow\left(2003^4\right)^{500}.2003^3=1.2003^3=2003^3=7\left(mod10\right)\)
=>20032003 tận cùng = 7
\(1997^4=1\left(mod10\right)\Rightarrow\left(1997^4\right)^{499}.1997=1.1997=1997=7\left(mod10\right)\)
=>19971997 tận cùng = 7
do đó 20032003-19971997 tận cùng = 0 nên nó chia hết cho 10
Hay \(0,3\left(2003^{2003}-1997^{1997}\right)\) là một số tự nhiên