Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a/ \(M=\left(-2x^4+x^2+5\right)-\left(5x^2-x^3+4x\right)\)
\(=-2x^4+x^2+5-5x^2+x^3-4x\)
\(=-2x^4+x^3-4x^2-4x+5\)
Vậy...
b/ \(M=-2x^4+x^2+5+5x^2-x^3+4x\)
\(=-2x^4-x^4+6x^2+4x+5\)
Vậy...
c/ \(M=\left(5x^2-x^3+4x\right)-\left(-2x^4+x^2+5\right)\)
\(=5x^2-x^3+4x+2x^4-x^2-5\)
\(=2x^4-x^3+4x^2-5\)
Vậy...
d/ \(M=-\left(5x^2-x^3+4x\right)\)
\(=x^4-5x^2-4x\)
Vậy..
a, x=-505
b, x=35/8 hoac -37/8
nhung cau con lai thi tong tu
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-17x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
c: =>24x^2+16x-9x-6-4x^2-16x-7x-28=20x^2-4x+5x-1
=>-16x-34=x-1
=>-17x=33
=>x=-33/17
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
e: =>8x+16-5x^2-10x+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
f: =>4(x^2+4x-5)-x^2-7x-10=3x^2+3x-6
=>4x^2+16x-20-4x^2-10x+4=0
=>6x=16
=>x=8/3
\(P\left(x\right)=5x^5+5x^4-2x^2+5x^2-x^5-4x^4+1-4x^5=x^4+3x^2+1\)
Mà \(x^4\ge0;3x^2\ge0=>x^4+3x^2+1\ge1>0\) nên \(P\left(x\right)\) vô nghiệm
Hok tốt nha !
P(x) = 5x5 + 5x4 - 2x2 + 5x2 - x5 - 4x4 + 1 - 4x5
P(x) = (5x5 - x5 - 4x5) + (5x4 - 4x4) - (2x2 - 5x2) + 1
P(x) = x4 + 3x2 + 1
Ta có: x4 \(\ge\)0 \(\forall\)x; 3x2 \(\ge\)0 \(\forall\)x
=> x4 + 3x2 + 1 \(\ge\)1 \(\forall\)x
=> P(x) \(\ne\)0
=> P(x) vô nghiệm