Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt f(x) = x5 – 3x4 + 5x – 2, ta có:
⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒⎧⎪⎨⎪⎩f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3){f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒{f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3)
_ Hàm số f(x) là hàm số đa thức liên tục trên R.
⇒ Hàm số f(x) liên tục trên các đoạn [0, 1], [1, 2], [2, 3] (4)
Từ (1), (2), (3) và (4) ⇒ phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất một nghiệm trên mỗi khoảng (0, 1), (1, 2), (2, 3).
Vậy phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất ba nghiệm trên khoảng (-2, 5) (đpcm)
Đặt \(f\left(x\right)=x^5-3x^4+5x-2\).
\(f\left(-2\right)=\left(-2\right)^5-3.\left(-2\right)^4+5.\left(-2\right)-2=-56< 0\).
\(f\left(0\right)=-2< 0\).
\(f\left(1\right)=1^5-3.1^4+5.1-2=1>0\).
\(f\left(2\right)=2^5-3.2^4+5.2-2=-8< 0\).
\(f\left(3\right)=3^5-3.3^4+5.3-2=13>0\).
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right).f\left(1\right)< 0\\f\left(1\right).f\left(2\right)< 0\\f\left(2\right).f\left(3\right)< 0\end{matrix}\right.\).
Hàm số đã cho là hàm đa thức nên liên tục trên R.
Suy ra hàm số liên tục trên các đoạn: \(\left[0;1\right];\left[1;2\right];\left[2;3\right]\) nên phương trình \(x^5-3x^4+5x-2=0\) có ít nhất một nghiệm trên các khoảng \(\left(0;1\right);\left(1;2\right);\left(2;3\right)\).
a/ Đề không rõ ràng bạn
Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R
b/ Xét \(f\left(x\right)=x^3+3x^2-1\)
Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)
\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)
\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)
\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)
\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt
c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)
\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)
\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)
\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
d/ \(f\left(x\right)=5sin3x+x-10\)
\(f\left(0\right)=-10\)
\(f\left(4\pi\right)=4\pi-10\)
\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm
1.
a.
\(\Leftrightarrow sin\left(3x-30^0\right)=sin\left(45^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-30^0=45^0+k360^0\\3x-30^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{75^0}{3}+k120^0\\x=\frac{165^0}{3}+k120^0\end{matrix}\right.\)
b.
\(sin\left(5x-\frac{\pi}{3}\right)=sin\left(2\pi-\frac{\pi}{4}-2x\right)\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{3}\right)=sin\left(-\frac{\pi}{4}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{3}=-\frac{\pi}{4}-2x+k2\pi\\5x-\frac{\pi}{3}=\frac{5\pi}{4}+2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{84}+\frac{k2\pi}{7}\\x=\frac{19\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
c.
\(4x-\frac{\pi}{3}=k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
d.
\(sin\left(2x+\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow2x+\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{3}+k\pi\)
Do \(x\in\left(-\frac{\pi}{4};2\pi\right)\Rightarrow-\frac{\pi}{4}< -\frac{\pi}{3}+k\pi< 2\pi\)
\(\Rightarrow\frac{1}{12}< k< \frac{7}{3}\Rightarrow k=\left\{1;2\right\}\)
\(\Rightarrow x=\left\{\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)
e.
\(sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{6}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k2\pi\\x=\frac{7\pi}{12}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{12};\frac{7\pi}{12}\right\}\)
1.
Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)
\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)
\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)
\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)
\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)
\(\Rightarrow9M+m=0\)
2.
\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)
\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)
\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)
\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)
\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)
\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)
\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)
\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)
Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)
Đáp án A
a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.
Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).
Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.
b) Hàm số g(x) = cosx – x xác định trên R nên liên tục trên R.
Mặt khác, ta có g(0).g(π/2) = 1. (-π/2) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; π/2).
a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.
Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).
Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.
b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.
Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).
a: Đặt \(A\left(x\right)=x^5-5x^3+4x-1\)
Vì A(x) là đa thức bậc 5 nên A(x) có tối đa 5 nghiệm(*)
\(A\left(-2\right)=\left(-2\right)^5-5\cdot\left(-2\right)^3+4\cdot\left(-2\right)-1=-1\)
\(A\left(-1,5\right)=\left(-1,5\right)^5-5\cdot\left(-1,5\right)^3+4\cdot\left(-1,5\right)-1=\dfrac{73}{32}\)
\(A\left(1\right)=1^5-5\cdot1^3+4\cdot1-1=-1\)
Vì \(A\left(-2\right)\cdot A\left(-1,5\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (-2;-1,5)(1)
Vì \(A\left(-1,5\right)\cdot A\left(1\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (-1,5;1)(2)
\(A\left(0\right)=0^5-5\cdot0^3+4\cdot0-1=-1\)
\(A\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5-5\cdot\left(\dfrac{1}{2}\right)^3+4\cdot\dfrac{1}{2}-1=\dfrac{13}{32}\)
\(A\left(1\right)=1^5-5\cdot1^3+4\cdot1-1=-1\)
Vì \(A\left(0\right)\cdot A\left(\dfrac{1}{2}\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (0;1/2)(3)
Vì A(1/2)*A(1)<0
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (1/2;1)(4)
\(A\left(2\right)=2^5-5\cdot2^3+4\cdot2-1=-1\)
\(A\left(3\right)=3^5-5\cdot3^3+4\cdot3-1=119\)
Vì A(2)*A(3)<0
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (2;3)(5)
Từ (1),(2),(3),(4),(5) suy ra A(x) có ít nhất 5 nghiệm
Kết hợp với cả (*), ta được: A(x) có đúng 5 nghiệm
b: Đặt \(B\left(x\right)=4x^3-8x^2+1\)
\(B\left(-0,5\right)=4\cdot\left(-0,5\right)^3-8\cdot\left(-0,5\right)^2+1=-1,5\)
\(B\left(0\right)=4\cdot0^3-8\cdot0^2+1=1\)
Vì \(B\left(-0,5\right)\cdot B\left(0\right)< 0\)
nên phương trình B(x)=0 có một nghiệm thuộc (-0,5;0)
=>Phương trình \(4x^3-8x^2+1=0\) có nghiệm thuộc (-1;2)