K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Câu 1:

a) \(7x-14=0\Leftrightarrow7x=14\Leftrightarrow x=2\)2

Vậy tập nghiệm của phương trình là S={2}

b) \(\left(3x-1\right)\left(2x-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)

Vậy......................

c)\(\left(3x-1\right)=x-2\)

\(\Leftrightarrow\)\(3x-1-x+2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)Vậy...................

Câu 2:a)

\(2x+5\le9\Leftrightarrow2x\le4\)

\(\Leftrightarrow x\le2\)vậy......

b)\(3x+4< 5x-3\)

\(\Leftrightarrow2x>7\Leftrightarrow x>\frac{2}{7}\)

Vậy..........

c)\(\frac{\left(3x-1\right)}{4}>2\)

\(\Leftrightarrow3x-1>8\)

\(\Leftrightarrow3x>9\Leftrightarrow x>3\)

vậy.............

Câu 3:a).....

b) Áp dụng định lí pytago vào \(\Delta\)vuong ABC,có:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=144+256=20^2\)

\(\Leftrightarrow BC=20\)

Xét \(\Delta\)vuông ABC và \(\Delta\)vuông HBA, có:

\(\widehat{BAH}=\widehat{ACH}\)(cùng phụ với góc ABC)

\(\Rightarrow\Delta\)ABC đồng dạng với\(\Delta\)HBA(g.g)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)

\(\frac{\Rightarrow16}{AH}=\frac{20}{16}\Rightarrow AH=12,8\left(cm\right)\)

28 tháng 4 2017

ban oi lam ca cau 3a nua va ke truc so minh moi k 

27 tháng 2 2019

a) Thay \(x=1\)vào pt ta được :

\(1+k-4-4=0\)

\(\Leftrightarrow k-7=0\)

\(\Leftrightarrow k=7\)

b) Thay \(k=7\)vào pt ta được :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(x-1=0\Leftrightarrow x=1\)

\(x^2+8x+4=0\)

Ta có :  \(\Delta=8^2-4\times4=48>0\)

\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)

Vậy ...

26 tháng 2 2019

a)thay k=0, ta có

\(4x^2-25+0^2+4.0.x=0\)

\(\Leftrightarrow4x^2-25+0+0=0\)

\(\Leftrightarrow4x^2-25=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{\frac{5}{2};-\frac{5}{2}\right\}\)

b) Thay k=-3, ta có:

\(4x^2-25+\left(-3\right)^2+4\left(-3\right)x=0\)

\(\Leftrightarrow4x^2-25+9-12x=0\)

\(\Leftrightarrow4x^2-16-12x=0\)

\(\Leftrightarrow4x^2-16+4x-16x=0\)

\(\Leftrightarrow\left(4x^2+4x\right)-\left(16x+16\right)=0\)

\(\Leftrightarrow4x\left(x+1\right)-16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-16\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\4x-16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=4\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;4\right\}\)

c) Thay x=-2, ta có:

\(4\left(-2\right)^2-25+k^2+4\left(-2\right)k=0\)

\(\Leftrightarrow16-25+k^2-8k=0\)

\(\Leftrightarrow-9+k^2-8k=0\)

\(\Leftrightarrow-9+k^2+k-9k=0\)

\(\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\)

\(\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\)

\(\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}k+1=0\\k-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k=-1\\k=9\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;9\right\}\)