K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(14n+17;21n+35)

=>\(\left\{{}\begin{matrix}14n+17⋮d\\21n+35⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+70⋮d\end{matrix}\right.\)

=>\(42n+51-42n-70⋮d\)

=>\(-19⋮d\)

=>\(\dfrac{14n+17}{21n+35}\) không phải là phân số tối giản nha bạn

7 tháng 5 2015

Gọi d là ucln(14n+17 và21n+25 )

hay 14n+17 và21n+25chia hết d

      3(14n+17)và 2(21n+25)

      hay42n+51  chia hết d(1)

           42n+50 chia hết d(2)

     từ 1 và 2 =>42n+51- 42n+50 chia hết d

=>1 chia hết d

=>d=1

đúng cái 

7 tháng 5 2015

gọi ƯCLN ( 14n +17: 21n + 25) là d

ta có : 14n + 17 chia hết d = 7+ ( 14n + 17) = 21n + 24 chia hết cho d

21n +25 chia hết d = 0 + (21n +25) = 21n +25 chia hết cho d

=> 21n + 25 - 21n -24 chia hết cho d

 => 1 chia hết cho d

=> d=1  

vậy ƯCLN (14n +17 ; 21n + 25) =1

=> PS TRÊN LÀ PHÂN SỐ TỐI GIẢN

 

Giải:

a) \(A=\dfrac{12n+1}{30n+2}\) 

Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)      \(\Rightarrow\left[{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\)        \(\Rightarrow\left[{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản

b) \(B=\dfrac{14n+17}{21n+25}\) 

Gọi \(ƯCLN\left(14n+17;21n+25\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản

Chúc bạn học tốt!

Gọi \(d=ƯC\left(14n+17;21n+25\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(14n+17;21n+25\right)=1\)

hay phân số \(B=\dfrac{14n+17}{21n+25}\) là phân số tối giản(Đpcm)

3 tháng 5 2015

b. Gọi d là ƯCLN của 14n+17 và 21n+25

Ta có: * 14n+17 chia hết cho d

=> 3 (14n+17) chia hết cho d

=> 42n+51 chia hết cho d

* 21n+25 chia hết cho d

=> 2 (21n+25) chia hết cho d

=> 42n+50 chia hết cho d

Ta lại có:

42n+51 - (42n+50) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> B là phân số tối giản

 

nhấn đ-ú-n-g cko mìh nhaz

26 tháng 3 2018

a,(12n+1;30n+2)=1

12n+1 chia hết cho d

30n+2 chia hết cho d

<=>60n+5 chia hết cho d

60n+4 chia hết cho d

=>(12n+1 - 30n+2)=(60n+5)-(60n+4)=1

4 tháng 3 2022

-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).

-Có: \(\left(14n+3\right)⋮a\)

\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)

\(\Rightarrow\left(42n+9\right)⋮a\) (1)

-Có: \(\left(21n+4\right)⋮a\)

\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)

\(\Rightarrow\left(48n+8\right)⋮a\) (2)

-Từ (1) và (2) suy ra:

\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\in\left\{1;-1\right\}\)

-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.

DD
15 tháng 7 2021

Đặt \(d=\left(21n+4,14n+3\right)\)

Suy ra 

\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

16 tháng 6 2019

a, \(A=\frac{12n+1}{30n+2}\)

Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

b, \(B=\frac{14n+17}{21n+25}\)

Gọi \(d=ƯCLN\left(14n+17;21n+25\right)\)

\(\Rightarrow\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

16 tháng 6 2019

#Giải:

a) Gọi d = ƯC (12n + 1, 30n + 2 )

Xét hiệu :

(30n + 2) - (12n + 1) chia hết cho d

2(30n + 2) - 5 (12n + 1 ) chia hết cho d 

60n + 4 - 60n - 5 chia hết cho d

 4 - 5 chia hết cho d

=> -1 chia hết cho d 

=> d € Ư (-1)

Ư (-1) = { 1 ; -1 }

    Vậy A là phân số tối giản

b)*Tương tự*

14 tháng 7 2018

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮d⇔d=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản