Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản
b, tương tự
c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)
+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)
+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)
Mà : \(2n^2+3n⋮d\)
\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)
\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)
\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)
Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản
d, tương tự câu c
Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé
Gọi d là UCLN(21n+4;14n+3)
\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
Vì
\(42n+8;42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d
⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d
⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d
⇒2⋮d⇒2⋮d
⇒d∈{1;2}⇒d∈{1;2}
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d
⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
Đặt \(\left(3n-7,5-2n\right)=d\left(d\inℕ^∗\right)\Rightarrow\hept{\begin{cases}3n-7⋮d\\5-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-7\right)⋮d\\3\left(5-2n\right)⋮d\end{cases}}}\)
\(\Rightarrow2\left(3n-7\right)+3\left(5-2n\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\frac{3n-7}{5-2n}\)tối giản
Bài 1:
\(a,\dfrac{n+1}{2n+3}.\)
Đặt \(ƯCLN\left(n+1,2n+3\right)=d.\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d.\\2n+3⋮d.\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d.\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d.\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản \(\forall n\in Z.\)
\(b,\dfrac{2n+3}{3n+5}.\)
Đặt \(ƯCLN\left(2n+3,3n+5\right)=d.\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d.\\3n+5⋮d.\end{matrix}\right.\)
\(\Rightarrow\left(3n+5\right)-\left(2n+3\right)⋮d.\)
\(\Rightarrow2\left(3n+5\right)-3\left(2n+3\right)⋮d.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d.\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy phân số \(\dfrac{2n+3}{3n+5}\) tối giản \(\forall n\in Z.\)
~ Học tốt!!! ~
Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )
=> n3 + 2n \(⋮\)d ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )
Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )
Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d
=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d
=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d
=> n2 + 1 \(⋮\)d ( * )
=> n2 . ( n2 + 1 ) \(⋮\)d
=> n4 + n2 \(⋮\)d ( 4 )
Từ ( 3 ) và ( 4 ) => ( n4 + 2n2 ) - ( n4 + 2n ) \(⋮\)d
=> n2 \(⋮\)d ( 5 )
Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy : phân số đã cho tối giản
a, Gọi d là ƯCLN( 2n-3; n-2 ). Ta có:
\(\hept{\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n-3⋮d\\2n-4⋮d\end{cases}}}\)
\(\Rightarrow\left(2n-4\right)-\left(2n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
=> 2n - 3 và n - 2 nguyên tố cùng nhau <=> Phân số \(\frac{2n-3}{n-2}\)tối giản.
b, Gọi d là ƯCLN( n + 2; 3n + 5 ). Ta có:
\(\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
=> n + 2 và 3n + 5 nguyên tố cùng nhau <=> Phân số \(\frac{n+2}{3n+5}\)tối giản.
Gọi ƯC ( 2n + 3 ; 3n + 5 ) là d( d thuộc N* )
=> 2n + 3 ⋮ d
=> 3.( 2n + 3 ) ⋮ d
=> 6n + 9 ⋮ d
=> 3n + 5 ⋮ d
=> 2.( 3n + 5 ) ⋮ d
=> 6n + 10 ⋮ d
=> [ ( 6n + 10 ) - ( 6n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vậy 2n+3/ 3n+5 là tối giản.
Gọi ƯC ( 2n + 3 ; 3n + 5 ) là d( d thuộc N* )
=> 2n + 3 ⋮ d
=> 3.( 2n + 3 ) ⋮ d
=> 6n + 9 ⋮ d
=> 3n + 5 ⋮ d
=> 2.( 3n + 5 ) ⋮ d
=> 6n + 10 ⋮ d
=> [ ( 6n + 10 ) - ( 6n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vậy 2n+3/ 3n+5 là tối giản.