\(\frac{14n+3}{21n+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

gọi d là UCLN(14n+3;21n+4)

ta có:

3(14n+3)-2(21n+4) chia hết cho d

=>(42n+9)-(42n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=> ps \(\frac{14n+3}{21n+4}\) tối giản

22 tháng 3 2016

mk chỉ giải tắt thôi nha

gọi ƯCLN ( của tử và mẫu p/s )là d (d thuộc N sao)

=>tử chia hết cho d

mẫu cũng chia hết cho d

=> 3* tử -2*mẫu = 1 chia hết cho d( do tử và mẫu chia hết cho d)

nên d=1(do d thuộc N sao)

Do đó phân số trên tối giản

mình là người đầu tiên k mình nha

31 tháng 7 2016

gọi UCLN( 14n +3 , 21n +4 ) =d  (1)

=> 21n+4  và 14n+3 chia hết cho d => 21n+4 - 14n-3  chia hết cho d 

=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d 

=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2) 

từ (1) ,(2) => dpcm

9 tháng 4 2017

Gọi UCLN(14n+3,21n+4) =a

ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a

suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a

suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a

suy ra (14n+3) - (14n+2) chia hết cho a

suy ra 14n+3 - 14n-2 chia hết cho a

 suy ra 1 chia hết cho a

và a thuộc U(1) = 1

Vậy 14n+3/14n+4 là phân số tối giản

chúc bạn học tốt

2 tháng 8 2015

a) Gọi d = ƯCLN (12n + 1; 30n + 2)

=> 12n + 1 chia hết cho d

30n + 2 chia hết cho d

=> 5. (12n + 1) chia hết cho d và 2. (30n + 2) chia hết cho d

Hay  60n + 5  chia hết cho d và  60n + 4  chia hết cho d

=> 60n + 5 - (60n + 4) = 1 chia hết cho d => 1 chia hết cho d => d = 1

=> 12n + 1 và 30n + 2 nguyên tố cùng nhau => PS đã cho tối giản

2 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

10 tháng 6 2017

Gọi d là : ƯCLN của 21n + 4 ; 14n + 3

Khi đó : 21n + 4 chia hết cho d ; 14n + 3 chia hết cho d

<=> 2(21n + 4) chia hết cho d ; 3(14n + 3) chia hết cho d

<=> 42n + 8 chia hết cho d ; 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> ƯCLN của 21n + 4 ; 14n + 3 = 1

Vậy phân số : \(\frac{21n+4}{14n+3}\)  tối giản với mọi n nguyên

10 tháng 6 2017

Gọi \(Ư\left(21n+4;14n+3\right)=d\)

Ta có :\(21n+4⋮d\)\(\Rightarrow42n+8⋮d\)(nhân với 2 )

          \(14n+3⋮d\Rightarrow42n+9⋮d\)(nhân với 3)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

=> ĐPCM

21 tháng 6 2020

Gọi d là ƯC(14n + 3 ; 21n + 5)

\(\Rightarrow\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\)

=> ( 42n + 10 ) - ( 42n + 9 ) chia hết cho d

=> 42n + 10 - 42n - 9 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(14n + 3 ; 21n + 5) = 1

=> \(\frac{14n+3}{21n+5}\)tối giản ( đpcm )

28 tháng 2 2015

GOI UCLN(21N+5;14N+3)LA D

{21N+5 CHIA HẾT CHO D

{14N+3 CHIA HET CHO D

BCNN(21;14)=7.3.2=42

{3.(21N+5)CHIA HẾT CHO D

{2.(14N+3) CHIA HẾT CHO D

{42.N+21 CHIA HẾT CHO D

{42N+22CHIA HET CHO D

=42N+21-42N+22 CHIA HET CHO D

=1CHIA HET CHO D

=D=1

16 tháng 5 2017

a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản

b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
 

16 tháng 5 2017

Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì 
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)\(\frac{en+g}{bn+c}\)là các phân số tối giản

17 tháng 2 2018

a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html

b, Gọi d là ƯCLN(tử;mẫu)

=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)

Hay \(4n+51-42n-50⋮d\)

=> \(1⋮d\)

Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.

14 tháng 7 2018

a,

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản