Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi ƯCLN( 12n+1 , 30n+2 ) = d ( d E Z ) => \(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) => ( 60n + 5 ) - ( 60n + 4 ) \(⋮\) d => 1 \(⋮\) d => d E { 1 ; -1 } Vậy PS \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Xét A=2n+1/3n+1
Gọi d là ƯCLN của 2n+1 và 3n+1, ta có
2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d (1)
3n+1 chia hết cho d \(\Rightarrow\)2(3n+1) chia hết cho d \(\Rightarrow\)6n+2 chia hết cho d (2)
Lấy (1) - (2), ta có:
6n+3-(6n+2) chia hết cho d \(\Rightarrow\)6n+3-6n-2 chia hết cho d \(\Rightarrow\)(6n-6n)+(3-2) chia hết cho d
\(\Rightarrow\)1 chia hết cho d \(\Rightarrow\)d=1
Vì ƯCLN(2n+1;3n+1)=1 nên 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. Do đó A=2n+1/3n+1 là phân số tối giản (đpcm)
Xét B=12+1/30+1
Cách giải tương tự như trên, ta có 5(12n+1)-2(30n+2) chia hết cho d
\(\Rightarrow\)60n+5-(60n+4) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d=1
Suy ra B=12n+1/30n+2 là phân số tối giản (đpcm)
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
Bạn tham khảo chỉ thay số thôi nha:
https://olm.vn/hoi-dap/detail/211315812824.html
Chúc bạn học tốt
Forever
4n+1/12n+7
Ta thấy:
3.(4n+1)=12n+3
nên 12n+7-(12n+3) chia hết 4n+1 hay 4 chia hết cho 4n+1
Suy ra 4-1 chia hết cho 4n hay 3 chia hết cho 4n
mà n thuộc n nên n rỗng
Vậy n rỗng
Gọi d là UCLN(4n+1;12n+7)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\12n+7⋮d\end{matrix}\right.\)
\(\Leftrightarrow3\left(4n+1\right)-12n-7⋮d\)
\(\Leftrightarrow12n+3-12n-7⋮d\)
\(\Leftrightarrow-4⋮d\)
\(\Leftrightarrow d\inƯ\left(-4\right)\)
\(\Leftrightarrow d\in\left\{1;-1;2;-2;4;-4\right\}\)(1)
Ta có: 4n+1 và 12n+7 là hai số lẻ
nên ƯCLN(4n+1;12n+7) là số lẻ
hay d là số lẻ
\(\Leftrightarrow d⋮2̸\)(2)
Từ (1) và (2) suy ra \(d\in\left\{1;-1\right\}\)
hay d=1
\(\LeftrightarrowƯCLN\left(4n+1;12n+7\right)=1\)
\(\Leftrightarrow\dfrac{4n+1}{12n+7}\) là phân số tối giản(đpcm)
gọi Đlà ƯC12n-7va3n+2
suy ra 12n-7 chia hết cho Đ suy ra 4(12n-7) chia hết cho Đ suy ra 48n-28
suy ra 3n+2.....................Đ...........3(3n+2)....................suy ra 9n+6
(48n-28)-(9n+6) chia hết cho Đ
1 chia hết cho Đ và Đ=1
.............................................