K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Gọi d là UC của (12n+1; 30n+2)

=> \(\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\) <=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

<=> (60n+5)-(60n+4) \(⋮\)d  <=> 1 \(⋮\)d

=> d=1

Như vậy, UCLN của (12n+1; 30n+2) là 1

=> Phân số là tối giản

3 tháng 2 2016

Gọi (12n+1,30n+2)=d

=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d                                                                 (1)

     30n+2 chia hết cho d => 2(30n+2) chia hết cho d                                                                 (2)

Từ (1) và (2) => 5(12n+1) - 2(30n+2) chia hết cho d

                        60n+5 - 60n+4 chia hết cho d

                     1 chia hết cho d 

                   => d=1

=> 12n+1/30n+2 là phân số tối giản

Phần tiếp theo tương tự 

3 tháng 2 2016

minh kho biet

\(A=\frac{12n+1}{30n+2}\)

Gọi d là ƯC ( 12n+1 ; 30n+2 )

Ta có :

\(12n+1⋮d\)\(30n+2⋮d\)

\(\Rightarrow12n+1-30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-50n+4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)

Kết luận : Vậy A là phân số tối giản với moin số nguyên n

19 tháng 4 2021

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

=>(12n+1)chia hết cho d

=>(30n+2) chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>(60n+5) - (60n+4) chia hết cho d

=>              1 chia hết cho d

=>                    1=d

Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s

16 tháng 1 2019

\(UCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{12n+1}{30n+2}\) la phan so toi gian

16 tháng 1 2019

Gọi \(d\inƯC\left(12n+1,30n+2\right)\Rightarrow12n+1⋮d,30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)và \(2\left(30n+2\right)⋮d\)

\(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

25 tháng 1 2019

Gọi (12n + 1; 30n + 2) = d

=> 12n + 1 chia hết cho d  

      30n + 2 chia hết cho d

Xét hiệu:  5(12n + 1) - 2(30n + 2)  chia hết cho d

           <=>  60n + 5 - 60n - 4   chia hết cho d

           <=>   1  chia hết cho d

=> d = 1

Vậy (12n + 1)/(30n + 2) là phân số tối giản

18 tháng 5 2020

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.

Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.

=> [(60n + 5) - (60n + 4)⋮ d.

=> (60n + 5 - 60n - 4)⋮ d.

=> 1⋮ d => d = 1.

Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.

Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.

7 tháng 2 2019

Ta có 12n+1=60n+5(1)

30n+2=60n+4(2)

Lấy (1)-(2)=60n+5-60n-4=1

ƯCLN(12n+1,30n+2)=1

Vậy Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản

7 tháng 2 2019

Gọi \(\text{ƯCLN(12n + 1 ; 30n + 2) = d }\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}24n+2⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow6n⋮d\)

\(\Rightarrow12n⋮d\)

Mà \(12n+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(Do\text{ }d\inℕ^∗\right)\)

=> 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> Phân số \(\frac{12n+1}{30n+2}\)tối giản

25 tháng 2 2016

Gọi d là ƯC ( 30n + 1 ; 15n + 2 )

=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d

=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d

=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d

=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d

=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }

Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản