\(\frac{3n-7}{5-2n}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Đặt \(\left(3n-7,5-2n\right)=d\left(d\inℕ^∗\right)\Rightarrow\hept{\begin{cases}3n-7⋮d\\5-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-7\right)⋮d\\3\left(5-2n\right)⋮d\end{cases}}}\)

\(\Rightarrow2\left(3n-7\right)+3\left(5-2n\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\frac{3n-7}{5-2n}\)tối giản

24 tháng 2 2017

a)gọi d thộc ƯC ( 2n+5,3n+7)

=> 2n+5chia hết cho d              6n+15chia hết cho d

                                    <=>                                      <=> 6n+15-6n-14c/h cho d<=> 1 c/h cho d<=> d=1;-1

và 3n+7 chia hết cho d            và 6n+14 c/h cho d

=>A là p số tối giản

b) làm tương tự a). ở đây, nhân 2n-5 lên 3 lần rồi lấy 6n-14-kết q vừa tìm đc thì ta đc d=1

24 tháng 2 2017

a)gọi d là ƯCLN(2n+5;3n+7)

=>2n+5​ chia hết cho d và 3n+7 chia hết cho d

=>(2n+5)-(3n+7) chia hết cho d

hay 3(2n+5)-2(3n+7) chia hết cho d

=>d=1

Vì ƯCLN=1. Nên phân số 2n+5/3n+7 là phân số tối giản 

b) làm tương tự như câu a nhé bạn

13 tháng 4 2018

a, gọi d là ƯCLN của tử và mẫu 

=> d =1 => câu a,b,c tối giản

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

16 tháng 5 2020

a)  Gọi d là ƯCLN của n và n+1  ( d\(\in\)N* )

Ta có:  n \(⋮\)d  và  n+1 \(⋮\) d

\(\Rightarrow\)( n+1 ) -  n\(⋮\)  d

\(\Rightarrow\)\(⋮\) d

Mà d\(\in\)  N*  \(\rightarrow\)d = 1

ƯCLN ( n, n+1 )= 1

\(\Rightarrow\)n và n+1 là 2 số nguyê tố cùng nhau

\(\Rightarrow\)\(\frac{n}{n+1}\)là phân số tối giản với mọi n\(\in\)N*

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

19 tháng 2 2018

Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)

\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản 

19 tháng 2 2018

a        Gọi ước chung của 2n+5 và 3n+7 là n

        2n+5 ⋮ x=>6n+15⋮x 

       3n+7  ⋮ x =>6n+14 ⋮x

        =>1 chia hết x=> x thuộc ước của 1

          Vậy phân số đó tối giản

b       6n-14 chia hết x

         2n-5 chia hết x=>6n-15 chia hết x

        =>1 chia hết x=> x thuộc ước của 1

        Vậy phân số đó tối giản