\(\dfrac{n+1}{2n+3}\) tối giản với mọi n

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Để phân số \(\dfrac{n+1}{2n+3}\) là phân số tối giản thì (n + 1, 2n + 3) = 1

Đặt (n + 1, 2n + 3) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(n+1\right)⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\) (2n +3) - (2n + 2) \(⋮\) d

\(\Rightarrow\) 1 \(⋮\) d

\(\Rightarrow\) d = 1

\(\Rightarrow\) (n + 1, 2n + 3) = 1

Vậy phân số \(\dfrac{n+1}{2n+3}\) là phân số tối giản.

6 tháng 3 2017

Gọi d \(\in\) ƯC(n + 1; 2n + 3)

Ta có: n + 1 \(⋮\) d và 2n + 3 \(⋮\) d

\(\Rightarrow\) 2(n + 1) \(⋮\) d và 2n + 3 \(⋮\) d

\(\Rightarrow\) 2n + 2 \(⋮\) d và 2n + 3 \(⋮\) d

\(\Rightarrow\) (2n + 2) - (2n + 3) \(⋮\) d

\(\Rightarrow\) -1 \(⋮\) d

\(\Rightarrow\) d = \(\pm\) 1

Vậy: d = \(\pm\) 1

24 tháng 1 2018

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

25 tháng 1 2018

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

18 tháng 3 2018

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Leftrightarrow2⋮d\)

\(\Leftrightarrow d\inƯ\left(2\right)\)

+) \(d=2\Leftrightarrow2n+3⋮2\)

\(2n⋮2\)

\(\Leftrightarrow3⋮2\left(loại\right)\)

\(\LeftrightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Leftrightarrow\dfrac{2n+3}{4n+8}\) tối giản với mọi n

19 tháng 3 2018

cảm ỏn bạn đã giúp mình giải bài toán nàyhihi

30 tháng 4 2017

a)gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

và n+1 chia hết cho d

=>2(n+1) chia hết cho d

=>2n+3-2(n+1)chia hết cho d

hay 1chia hết cho d

=>d=1

=>phân số \(\dfrac{n+1}{2n+3}\)tối giản

b)Gọi d là ƯCLN(2n+3;4n+8)

=>4n+8chia hết cho d

và 2n+3 chia hết cho d

=>2(2n+3) chia hết cho d

=>4n+8-2(2n+3) chia hết cho d

hay 2 chia hết cho d

Do 2n+3 là số lẻ và 2n+3 chia hết cho d

=>d không thể là số chẵn=>d=1

=>phân số \(\dfrac{2n+3}{4n+8}\) tối giản

9 tháng 5 2017

Gọi d=ƯCLN (n+1 ; 2n+3)

Do đó d thuộc ƯC (n+1 ; 2n+3)

=> n+1 chia hết cho d ; 2n+3 chia hết cho d

=> 2n+2 chia hết cho d ; 2n+3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> n+1 và 2n+3 là hai số nguyên tố cùng nhau

=> n+1/2n+3 là phân số tối giản với mọi số n.

30 tháng 3 2017

Đặt ƯCLN(n + 1; 2n + 3) là d.

Ta có: n + 1 \(⋮\) d và 2n + 3 \(⋮\) d.

=> 2(n + 1) \(⋮\) d và 2n + 3 \(⋮\) d.

=> 2n + 2 \(⋮\) d và 2n + 3 \(⋮\) d.

=> (2n + 3) - (2n + 2) \(⋮\) d.

=> 2n + 3 - 2n - 2 \(⋮\) d.

=>3 - 2 \(⋮\) d => 1 \(⋮\) d => d = 1.

Vậy \(\dfrac{n+1}{2n+3}\) là phân số tối giản.

27 tháng 4 2017

a) Gọi d là ƯCLN(n+1;2n+3)

=>n+1 chia hết cho d và 2n+3 chia hết cho d

=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>(2n+3)-(2n+2) chia hết cho d

hay 1 chia hết cho d

=>d=1

=> phân số \(\dfrac{n+1}{2n+3}\) tối giản với mọi số tự nhiên n

b) Gọi d là ƯCLN(4n+8;2n+3)

=>4n+8 chia hết cho d và 2n+3 chia hết cho d

=>2(n+3) chia hết cho d hay 4n+6 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

hay 2 chia hết cho d

Do 2n+3=2(n+1)+1 không chia hết cho 2=>d phải là số lẻ và 2 chia hết cho d =>d=1

=> phân số \(\dfrac{2n+3}{4n+8}\) tối giản với mọi số tự nhiên n

27 tháng 4 2017

Bạn vào đây nhé: Câu hỏi của Nguyễn Đinh Huyền Mai - Toán lớp 6 | Học trực tuyến

14 tháng 6 2017

a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản

b, tương tự

c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)

+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)

+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)

Mà : \(2n^2+3n⋮d\)

\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)

\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)

\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản

d, tương tự câu c

15 tháng 6 2017

Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé

Gọi d là UCLN(21n+4;14n+3)

\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(42n+8;42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n

5 tháng 4 2017

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm