Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d
⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d
⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d
⇒2⋮d⇒2⋮d
⇒d∈{1;2}⇒d∈{1;2}
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d
⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
Đặt ƯCLN(n + 1; 2n + 3) là d.
Ta có: n + 1 \(⋮\) d và 2n + 3 \(⋮\) d.
=> 2(n + 1) \(⋮\) d và 2n + 3 \(⋮\) d.
=> 2n + 2 \(⋮\) d và 2n + 3 \(⋮\) d.
=> (2n + 3) - (2n + 2) \(⋮\) d.
=> 2n + 3 - 2n - 2 \(⋮\) d.
=>3 - 2 \(⋮\) d => 1 \(⋮\) d => d = 1.
Vậy \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
Để phân số \(\dfrac{n+1}{2n+3}\) là phân số tối giản thì (n + 1, 2n + 3) = 1
Đặt (n + 1, 2n + 3) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(n+1\right)⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\) (2n +3) - (2n + 2) \(⋮\) d
\(\Rightarrow\) 1 \(⋮\) d
\(\Rightarrow\) d = 1
\(\Rightarrow\) (n + 1, 2n + 3) = 1
Vậy phân số \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
Gọi d \(\in\) ƯC(n + 1; 2n + 3)
Ta có: n + 1 \(⋮\) d và 2n + 3 \(⋮\) d
\(\Rightarrow\) 2(n + 1) \(⋮\) d và 2n + 3 \(⋮\) d
\(\Rightarrow\) 2n + 2 \(⋮\) d và 2n + 3 \(⋮\) d
\(\Rightarrow\) (2n + 2) - (2n + 3) \(⋮\) d
\(\Rightarrow\) -1 \(⋮\) d
\(\Rightarrow\) d = \(\pm\) 1
Vậy: d = \(\pm\) 1
Gọi (2n+1;2n(n+1))=d
=>2n+1 chia hết cho d;2n2+2n chia hết cho d
=>2n+1 chia hết cho d;2nn+n+n chia hết cho d
=>2n+1 chia hết cho d;n(2n+1)+n chia hết cho d
Mà n(2n+1) chia hết cho d
=>2n+1 chia hết cho d;n chia hết cho d
=>2n+1 chia hết cho d;2n chia hết cho d
=>(2n+1)-2n chia hết cho d
=>1 chia hết cho d
=>d=1
=>(2n+1;2n(n+1))=1
Vậy 2n+1/2n(n+1) là phân số tối giản (đpcm)
Gọi d là ƯCLN ( 2n+1, 3n+2)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
ne`, trả lời thj` trả lời cho nó hẳn hoi vào đấy nha, nên nhớ đây là toán.
a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản
b, tương tự
c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)
+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)
+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)
Mà : \(2n^2+3n⋮d\)
\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)
\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)
\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)
Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản
d, tương tự câu c
Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé
Gọi d là UCLN(21n+4;14n+3)
\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
Vì
\(42n+8;42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n