\(n\left(n+2\right)\left(25n^2-1\right)⋮24\forall n\in N.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

\(n\left(n+2\right)\left(25n^2-1\right)=n\left(n+2\right)24n^2+n\left(n+2\right)\left(n^2-1\right)\)

\(=24n^3\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

thành phần 24n3(n+2) chia hết cho 24.

thành phần sau là tích của 4 số tn liên tiếp nên trong 4 số thì phải có 1 số chia hết cho 3, có 2 số chẵn trong đó 1 số chẵn chia hết cho 4 (vì trong 4 số tn liên tiếp thì có 1 số chia hết cho 4) và một số chẵn còn lại chia hết cho 2 vậy tích 4 số chia hết cho 3x4x2=24.

=>(đpcm)

30 tháng 11 2017

   \(n.\left(n+2\right)\left(25^2-1\right)\)

\(=n.\left(n+2\right).\left(25-1\right)\left(25+1\right)\)

\(=n.\left(n+2\right).26.24\)

\(\Rightarrow n.\left(n+2\right).26.24⋮24\)\(\forall n\in N\)

30 tháng 11 2017

mình ghi nhầm đúng hơn là : \(n\left(n+2\right)\left(25n^2-1\right)\) giải jum mình nhé

24 tháng 6 2017

Đề sai rồi b

26 tháng 6 2017

Không sai đâu bạn

11 tháng 10 2017

khó thế

1 tháng 9 2017

sử dụng phương pháp quy nạp

*với n=1 thì 2 chia hết cho2 

*với n=2 thì 3*4=12 chia hết cho 4

thử đúng đến n=k cần cm n=k+ 

ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k

n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)

=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1

1 tháng 9 2017

thiếu số 1 ở chỗ cm đúng với n=k+1

18 tháng 2 2020

\(A=n\left(n+2\right)\left(73n^2-1\right)=n\left(n+2\right)\left(n^2-1\right)+72n^3\left(n+2\right)=\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)+72n^3\left(n+2\right)\)

Ta thấy n-1 , n , n+1, n+2 là tích 4 số tự nhiên liên tiếp nên có 2 số chẵn liên tiếp sẽ có tích chia hết cho 8

=> (n-1)n(n+1)(n+2) chia hết cho 8 

Dễ dàng lập luận đc (n-1)n(n+1)(n+2) chia hết cho 3

mà (8,3)=1

=> (n-1)n(n+1)(n+2) chia hết cho 24 

mà 72n^3(n+2) chia hết cho 24 
=> A chia hết cho 24 

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

a) Phản chứng. Giả sử tồn tại \( n\in\mathbb{N}|n^2+7n-40\vdots 121\)

\(\Rightarrow n^2+7n-40\vdots 11\)

\(\Leftrightarrow n^2-4n+4+11n-44\vdots 11\)

\(\Leftrightarrow n^2-4n+4=(n-2)^2\vdots 11\)

\(\Leftrightarrow n-2\vdots 11\) (vì \(11\in\mathbb{P}\) )

Do đó, đặt \(n=11k+2\)

Ta có, \(n^2+7n-40\vdots 121\)

\(\Leftrightarrow (11k+2)^2+7(11k+2)-40\vdots 121\)

\(\Leftrightarrow 121k^2+121k-22\vdots 121\)

\(\Leftrightarrow 22\vdots 121\) (vô lý)

Do đó, điểu giả sử là sai, nghĩa là không tồn tại bất kỳ số tự nhiên nào thỏa mãn \(n^2+7n-40\vdots 121\)

Hay \(n^2+7n-40\not\vdots 121\) (đpcm)

AH
Akai Haruma
Giáo viên
24 tháng 8 2017

Lời giải:

b) Giả sử phản chứng, nghĩa là

\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)

Thực hiện khai triển bằng hằng đẳng thức, ta có:

\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\)

\(=5a^2+20a+30\)

Khi đó:

\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)

\(\Leftrightarrow 5a^2+20a+30\vdots 25\)

\(\Leftrightarrow a^2+4a+6\vdots 5\)

Xét \(a\equiv 0\pmod 5\rightarrow a^2+4a+6\equiv 6\not\equiv 0\pmod 5\)

Xét \(a\equiv 1\pmod 5\rightarrow a^2+4a+6\equiv 1+4+6\not\equiv 0\pmod 5\)

Xét \(a\equiv 2\pmod 5\rightarrow a^2+4a+6\equiv 18\not\equiv 0\pmod 5\)

Xét \(a\equiv 3\pmod {5}\rightarrow a^2+4a+6=27\not\equiv 0\pmod {5}\)

Xét \(a\equiv 4\pmod 5\Rightarrow a^2+4a+6\equiv 38\not\equiv 0\pmod 5\)

Do đo, \(a^2+4a+6\not\vdots 5\), nghĩa là điều giả sử là sai. Ta có đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Bạn xem lời giải tại đây:

Câu hỏi của Lệ Nguyễn Thị Mỹ - Toán lớp 9 | Học trực tuyến

16 tháng 11 2022

 

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

=>A chia hết cho 210