Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$
$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$
$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$
$\Rightarrow f(0)=-18f(\frac{1}{3})$
$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$
$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)
Đặt \(f\left(x\right)=ax^2+bx+c\)
Hàm f(x) liên tục trên R
Ta có: \(f\left(1\right)=a+b+c\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c\)
\(\Rightarrow f\left(1\right)+f\left(\dfrac{1}{2}\right)=\dfrac{5a}{4}+\dfrac{3b}{2}+2c=0\)
\(\Rightarrow f\left(1\right)=-f\left(\dfrac{1}{2}\right)\)
\(\Rightarrow f\left(1\right).f\left(\dfrac{1}{2}\right)=-\left[f\left(1\right)\right]^2\le0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left[\dfrac{1}{2};1\right]\) hay pt đã cho luôn có nghiệm
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Đặt \(f\left(x\right)=x^3+ax^2-bx+c\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+ax^2-bx+c\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{a}{x}-\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại \(x=m>0\) đủ lớn sao cho \(f\left(m\right)>0\)
\(\lim\limits_{x\rightarrow-\infty}\left(x^3+ax^2-bx+c\right)=\lim\limits_{x\rightarrow-\infty}x^3\left(1-\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại \(x=n< 0\) đủ nhỏ sao cho \(f\left(n\right)< 0\)
\(\Rightarrow f\left(m\right).f\left(n\right)< 0\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Cần điều kiện \(a;b;c\) có ít nhất 2 số khác 0
- Với \(a=0\Rightarrow x=-\frac{c}{b}\) mà \(6b+19c=0\Rightarrow-\frac{c}{b}=\frac{6}{19}\Rightarrow x=\frac{6}{19}>0\)
- Với \(c=0\Rightarrow2a+6b=0\Rightarrow-\frac{b}{a}=\frac{1}{3}\)
\(ax^2+bx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{b}{a}=\frac{1}{3}>0\end{matrix}\right.\)
- Với \(abc\ne0\)
\(2a+6b+19c=0\Rightarrow2\left(a+3b\right)=-19c\Rightarrow a+3b=-\frac{19}{2}c\)
Đặt \(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(0\right)=c\) ; \(f\left(\frac{1}{3}\right)=\frac{a}{9}+\frac{b}{3}+c\)
\(\Rightarrow f\left(0\right).f\left(\frac{1}{3}\right)=c\left(\frac{a}{9}+\frac{b}{3}+c\right)=\frac{1}{9}c\left(a+3b+9c\right)\)
\(=\frac{1}{9}c\left(-\frac{19}{2}c+9c\right)=-\frac{1}{18}c^2< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{1}{3}\right)\)
Vậy phương trình luôn có một nghiệm dương
Ta có \(b=\dfrac{-6c-5a}{4}\).
Ta cần cm \(b^2-4ac\ge0\Leftrightarrow\dfrac{\left(6c+5a\right)^2}{16}\ge4ac\Leftrightarrow36c^2+25a^2-4ac\ge0\Leftrightarrow\left(4a-c\right)^2+35c^2+9a^2\ge0\).(luôn đúng)
Làm bừa xí, đúng hay ko còn tùy :)
Giả sử phương trình có 3 nghiệm x1, x2, x3 lập thành CSC
\(\Rightarrow x_1+x_3=2x_2\left(1\right)\)
Also have: \(x^3-ax^2+bx-c=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)=x^3-\left(x_1+x_2+x_3\right)x^2+\left(x_1x_2+x_2x_3+x_1x_3\right)x-x_1x_2x_3\)
\(\Rightarrow x_1+x_2+x_3=a\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow3x_2=a\Leftrightarrow x_2=\dfrac{a}{3}\)
\(\Rightarrow\left(\dfrac{a}{3}\right)^2-a\left(\dfrac{a}{3}\right)^2+b.\left(\dfrac{a}{3}\right)-c=0\Leftrightarrow-\dfrac{2a^3}{27}+\dfrac{ba}{3}-c=0\Leftrightarrow9ab=2a^3+27c\left(dpcm\right)\)