K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 1

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.

 

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

29 tháng 8 2023

\(y^2=-2\left(x^6-x^3y-32\right)\)

\(\Leftrightarrow2x^6-2x^3y+y^2=64\)

\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)

\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)

Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:

\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)

\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)

\(\Leftrightarrow-2\le x^2\le2\)

Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)

15 tháng 4 2019

Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)

* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)

                   \(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)

\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)

\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)

\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)

                    \(\Rightarrow x=6\)hoặc \(x=0\)

Có các nghiệm \(\left(x=6;y=1;z=0\right)\)          \(\left(x=6;y=-1;z=0\right)\)

                          \(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)

* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)

                \(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)

\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)

    \(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)

\(z^2>9\Rightarrow z^2\ge6^2=36\)

Ta có  \(3\left(x-3\right)^2+2z^2>33\)(loại)

Nghiệm nguyên của ptrình là: 

\(\left(x=6;y=1;z=0\right)\)           \(\left(x=6;y=-1;z=0\right)\)

\(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)