K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

25 tháng 2 2020

Ta có : \(3y^2+1=4x^2\)

\(\Leftrightarrow3y^2=4x^2-1\)

\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)

Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)

TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )

TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)

Khi đo s: \(2x-1=\left(2k+1\right)^2\) 

\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )

25 tháng 2 2020

Tại sao 2x+1 và 2x-1 lại nguyên tố cùng nhau vậy bạn?

6 tháng 10 2021

a) Từ giả thiếtta có thể đặt :  \(n^2-1=3m\left(m+1\right)\)  với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :

 \(TH1:2n-1=3u^2;2n+1=v^2\)

\(TH2:2n-1=u^2;2n+1=3v^2\)

\(TH1:\)

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2=2\left(mod3\right)\)

Còn lại TH2 cho ta  \(2n-1\) là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)

\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ  \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ  \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )

13 tháng 11 2022

 ơ kìa, sao biết 2n - 1 và 2n + 1 nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3) 

Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$

$\Leftrightarrow 4n^2+4n+8=4a^2+4a$

$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$

$\Leftrightarrow 2=(a-n)(a+n+1)$

Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:

$a+n+1=2; a-n=1$

$\Rightarrow n=0$ (tm)

26 tháng 8 2017

Đặt 111...1=a      ( n chữ số 1 )

=>10n=9a+1

Ta có

111...1222...2=(111...1).10n+222...2

=a(9a+1)+2a

=9a2+a+2a

=9a2+3a

=3a(3a+1)

=> DPCM

Đặt 111...1=a      ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM