K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

\(a^8-b^8=\left(a^4\right)^2-\left(b^4\right)^2=\left(a^4-b^4\right)\left(a^4+b^4\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\)

4 tháng 1 2016

 mk chẳng biết  nguyen hoang phi hung ak

12 tháng 6 2017

Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.

12 tháng 6 2017

Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:

\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)

\(\Leftrightarrow1,477=16\left(sai\right)\)

Vậy đề bài cho tào lao.

5 tháng 9 2021

Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).

Khi đó ta cần chứng minh:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)

\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)

\(=\dfrac{2}{2ax\left(a+x\right)}\)

\(=\dfrac{1}{ax\left(a+x\right)}\)

\(=\dfrac{1}{2a^2x^2}\)

Ta thấy: \(a+x\ge2\sqrt{ax}\)

\(\Leftrightarrow2ax\ge2\sqrt{ax}\)

\(\Leftrightarrow ax-\sqrt{ax}\ge0\)

\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)

\(\Leftrightarrow\sqrt{ax}\ge1\)

\(\Rightarrow ax\ge1\)

Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

AH
Akai Haruma
Giáo viên
25 tháng 7 2020

Lời giải:

Ta có: $a^2+b^2-2ab=(a-b)^2\geq 0$ với mọi $a,b$

$\Leftrightarrow ab\leq \frac{a^2+b^2}{2}$
Do đó: $a^2+b^2=4+ab\leq 4+\frac{a^2+b^2}{2}\Rightarrow a^2+b^2\leq 8(*)$

Mặt khác:

Từ đkđb suy ra $2(a^2+b^2)=2(4+ab)$

$\Leftrightarrow 3(a^2+b^2)=8+(a+b)^2\geq 8$

$\Rightarrow a^2+b^2\geq \frac{8}{3}(**)$

Từ $(*); (**)\Rightarrow$ đpcm.

9 tháng 4 2021

tính ra bạn ấy hỏi vào năm 2016 khi có người trả lòi thì đã là năm 2020

 

NV
2 tháng 7 2021

a.

Ta có: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{3}.2^2=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=1\)

b.

\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.2^2=2\) (sử dụng kết quả \(a^2+b^2\ge2\) của câu a)

Dấu "=" xảy ra khi \(a=b=1\)

c.

\(a^2b^2\left(a^2+b^2\right)=\dfrac{1}{2}ab.2ab\left(a^2+b^2\right)\le\dfrac{1}{8}\left(a+b\right)^2\left(2ab+a^2+b^2\right)^2=2\)

d.

\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge8.2+\dfrac{4}{\left(a+b\right)^2}=16+\dfrac{4}{2^2}=17\) (sử dụng kết quả câu b)

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

9 tháng 6 2018

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

9 tháng 6 2018

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)

14 tháng 7 2018

ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)

\(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm

\(\Rightarrow\) sai