\(\in Z\) và \(a+5b⋮7\) thì
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Ta có:\(a+5b⋮7\) \(\left(a,b\in Z\right)\)

\(\Rightarrow10\left(a+5b\right)⋮7\Rightarrow10a+50b⋮7\Rightarrow10a+b+49b⋮7\)

Do a,b thuộc Z và \(49b⋮7\) \(\Rightarrow10a+b⋮7\)

NV
13 tháng 4 2019

\(\left(a+5b\right)⋮7\Rightarrow10\left(a+5b\right)⋮7\)

\(\Rightarrow\left(10a+50b\right)⋮7\Rightarrow\left(10a+b+49b\right)⋮7\)

\(49b⋮7\Rightarrow\left(10a+b\right)⋮7\)

13 tháng 4 2019

Đặt a=m5(10a+b) - (a+5b)

= 50a+5b-a-5b

=49a

Do 49 ⋮ 7 => a ⋮ 7 nên

Nếu a=5b ⋮ 7 => 5(10a+b) ⋮ 7,(5,7) =1 => 10+b ⋮ 7 (1)

Nếu 10+b ⋮ 7 => 5(10a+b) ⋮ 7 => a+5b ⋮ 7 (2)

Từ (1) (2) suy ra

nếu a,b thuộc N và a+5b ⋮ 7 thì 10a+b ⋮ 7

Hk tốt

#Ngọc's_Ken'z

18 tháng 3 2020

\(2a+3b⋮17\Leftrightarrow2a+3b+17\left(2a+b\right)⋮17\Leftrightarrow36a+20b=4\left(9a+5b\right)⋮17\)

\(\text{mà 17 và 4 là 2 số nguyên tố cùng nhau nên:}9a+5b⋮17\)

\(\text{vậy:}2a+3b⋮17\Leftrightarrow9a+5b⋮17\)

\(2a+3b⋮17\Rightarrow8a+12b⋮17\)

\(\Rightarrow8a+9b+9a+5b\)

\(=17a+17b=17\left(a+b\right)⋮17\)

mà \(8a+12b⋮17\Rightarrow9a+5b⋮17\)

và ngược lại nếu \(9a+5b⋮17\Leftrightarrow2a+3b⋮17\)

25 tháng 2 2018

+, 3a+2b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 27a + 18b chia hết cho 17

Mà 17a và 17b đều chia hết cho 17

=> 27a+18b-17a-17b chia hết cho 17

=> 10a+b chia hết cho 17

+, 10a+b chia hết cho 17

=> 10a+b+17a+17b chia hết cho 17

=> 27a+18b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )

Vậy ............

Tk mk nha

2 tháng 7 2018

\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)

\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)

\(10a+b⋮17\)

\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)

\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)

\(\Rightarrow30a+20b-30a-3b⋮17\)

\(\Rightarrow17b⋮17\)

Có \(17⋮17\)nên \(10a+b⋮17\)

8 tháng 3 2017

a3+b3=(a+b)(a2-ab+b2)

Do a+b chia hết cho 3 => (a+b)(a2-ab+bchia hết cho 3

=> a3+b3=(a+b)(a2-ab+b2) chia hết cho 3 => đpcm

12 tháng 3 2017

bạn làm sai rồi

8 tháng 3 2018

a + 5.b chia hết cho 7

=> 3.(a+5.b) chia hết cho 7

=> 3a+15b chia hết cho 7

Mà 7a và 14b đều chia hết cho 7

=> 3a+15n+7a-14b chia hết cho 7

=> 10a+b chia hết cho 7

=> ĐPCM

Tk mk nha

8 tháng 3 2017

Ta có:\(a-11b+3c⋮17\)

\(\Rightarrow2a-22b+6c⋮17\)

Mặt khác:\(2a-22b+6c-\left(2a-5b+6c\right)\)

\(=2a-22b+6c-2a+5b-6c\)

\(\Rightarrow-17b⋮17\)

\(\Rightarrow2a-5b+6c⋮17\)

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)

14 tháng 8 2017

Theo đề bài ta có x = amam, y = bmbm (  a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = 2a2m2a2m, y = 2b2m2b2m; z = a+b2ma+b2m

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y

14 tháng 8 2017

\(\frac{a+b}{2m}=\left(\frac{a}{m}+\frac{b}{m}\right):2\)

=> z là trung bình cộng của x và y.

Mà x<y => x<z<y