\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Điều...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

theo bài ra ta có:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)

=> \(\frac{a}{c}=\frac{b}{a}\)

=> a2= bc (đpcm)

vậy điều ngược lại hoàn toàn đúng

6 tháng 6 2015

Ác Mộng sai rồi:

Ta có:\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\)

Vậy có thể đảo lại là đúng!!!!!

Chúc bạn học tốt ^_^

6 tháng 6 2015

\(a^2=bc\Leftrightarrow\frac{a}{b}=\frac{c}{a}\)

      Áp dụng tích chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{a}=\frac{c-a}{a-b}=\frac{c+a}{a+b}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

 Điều suy ngược lại không đúng!

5 tháng 11 2016

2. ....( đầu bài)

ta có:

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=>\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

AD t/ c dãy tỉ số bằng nhau ta có:

.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a+\left(b-b\right)}{2c+\left(d-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)

. \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2b}{2d}=\frac{b}{d}\)(2)

Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\)(đpcm)

 

10 tháng 10 2018

Thay vì áp dụng t/c dãy tỉ số bằng nhau,ta áp dụng cách đặt k cho ngắn! =)

a) Chứng minh: Nếu \(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Đặt \(a^2=bc=k\Rightarrow\frac{a}{c}=\frac{b}{a}=k\Rightarrow\hept{\begin{cases}a=kc\\b=ka\end{cases}}\). Thay vào,ta có:

\(\frac{a+b}{a-b}=\frac{kc+ka}{kc-ka}=\frac{k\left(c+a\right)}{k\left(c-a\right)}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)

b)Bạn tham khảo bài của Đỗ Ngọc Hải ở đây nhé: Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath

20 tháng 10 2016

a^2=cb

=> aa=cb

=>a/c=b/a=a+b/c+a=a-b/c-a

=>a+b/a-b=c+a/c-a

17 tháng 9 2016

\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

3 tháng 7 2017

ta có (a+b)*(c-a)= ac+bc-a2-ab(1)

 (a-b)*(c+a)= ac-bc+a2-ab(2)

bỏ ac và -ab ở (1)(2) có

(1)= bc - a=0

(2)= a- bc = 0

=> Đpcm

12 tháng 10 2018

Đặt \(a^2=bc=k\Rightarrow\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=kb\\c=ka\end{cases}}\). Thay vào,ta có:

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+a}{c-a}=\frac{ka+a}{ka-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Do (1) = (2) suy ra \(\frac{a+b}{a-b}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)

30 tháng 9 2018

Ta có a2 = bc 

<=> a . a = b .c 

<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)

\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)

(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)