K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:

$N=(a-2)(a+3)-(a-3)(a+2)=(a^2+a-6)-(a^2-a-6)=2a$ không có cơ sở để khẳng định đó là bội của $50$ bạn nhé.

29 tháng 8 2015

1) 

a) M = a(a + 2) - a(a - 5) - 7 = a(a + 2 - a + 5) - 7 = 7a - 7 = 7(a - 1) chia hết cho 7

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1}< 6\)} khoanh vào khẳng định đúng  - khẳng định 1 : có 3 phần tử của A là bội của 5 - khẳng định 2 : có 3 phần tử của A là bội của 3 - khẳng định 3 : có 2 phần tử của A là bội của 3 - khẳng định 4 : có 2 phần tử của A là bội của 5 bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt...
Đọc tiếp

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1}< 6\)}

khoanh vào khẳng định đúng 

- khẳng định 1 : có 3 phần tử của A là bội của 5

- khẳng định 2 : có 3 phần tử của A là bội của 3

- khẳng định 3 : có 2 phần tử của A là bội của 3

- khẳng định 4 : có 2 phần tử của A là bội của 5

bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\)

cho \(x\) là số thực thỏa mãn \(\left[x\right]\div2=3\div6\), khoanh vào khẳng định đúng

- khẳng định 1 : (x - 1) × (x - 3) ≥ 0

- khẳng định 2 : (x - 1) × (x - 3) > 0

- khẳng định 3 : (x - 1) × (x - 3) ≤ 0

- khẳng định 4 : (x - 1) × (x - 3) < 0

bài 3 : cho tam giác ABC có \(\widehat{A}=62^o,\widehat{B}=52^o,AD\) là tia phân giác góc A, D thuộc BC. Tính số đo của góc ADC

bài 4 : cho 2 số \(x,y\) thỏa mãn \(x\div15=y\div6\) và \(xy=10\), khoanh vào khẳng định đúng

- khẳng định 1 : y2 < 30 < x2

- khẳng định 2 : x2 < y2 < 30

- khẳng định 3 : y2 < x2 < 30

- khẳng định 4 : x2 < 30 < y2

bài 5 : cho tam giác ABC, số đo góc A là 44o. Kẻ Bx, Cy lần lượt là tia đối của tia BA, CA. Tia phân giác của các góc xBC và BCy cắt nhau tại H. Tính số đo của góc BHC

bài 6 : cho tam giác ABC có \(\widehat{A}=60^o,\widehat{B}=40^o,D\) là điểm nằm trên cạnh BC sao cho \(\widehat{DAC}=2\times\widehat{BAD}\). Tia phân giác góc B cắt AD tại M. Tính số đo góc AMB

bài 7 : căn bậc ba số thực \(a\) là số thực \(x\) sao cho x3 = a. Kí hiệu \(x=\sqrt[3]{a}\). Gia trị của \(x\) thỏa mãn \(\sqrt[3]{27x+27}+\sqrt[3]{8x+8}=5\) là :

bài 8 : cho \(x,y\) là các số thực khác 0 thỏa mãn \(x\div2=y\div7.\) Khoanh vào đẳng thức đúng nhất

- đẳng thức 1 : \(\left(x-y\right)\div\left(x+y\right)=5\div\left(-9\right)\)

- đẳng thức 2 : \(\left(x-y\right)\div\left(x+y\right)=5\div9\)

- đẳng thức 3 : \(\left(x-y\right)\div\left(x+y\right)=\left(-9\right)\div5\)

- đẳng thức 4 : \(\left(x-y\right)\div\left(x+y\right)=9\div5\)

0

b) Đặt $A=$ $(a-1).(a+2) +12$

$ = a^2+2a-a-2+12$

$ = a^2+a+10$

$ = a^2+a+1+9$

Giả sử $ A \vdots 9$

$\to a^2+a+1+9 \vdots 9$

$\to a^2+a+1 \vdots 9$

$\to 4a^2+4a+4 \vdots 9$ hay  : $a^2+4a+4 \vdots 3$

$\to (2a+1)^2 + 3 \vdots 3$

$\to (2a+1)^2 \vdots 3 \to 2a+1 \vdots 3$

Mà $3$ là số nguyên tố nên :

$(2a+1)^2 \vdots 9$

Do đó : $(2a+1)^2 + 3 \not \vdots 9$

Từ đs suy ra $A$ không là bội của $9$.

Câu b) em làm tương tự em tách thành chia hết cho $7$ vì $7$ là số nguyên tố.

a) Trường hợp 1: a=3k(k∈N)

Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Vì 3k+1 và 3k+2 không chia hết cho 3 nên \(\left(3k-1\right)\left(3k+2\right)+12⋮̸3\)

\(\Leftrightarrow\left(3k-1\right)\left(3k+2\right)+12⋮̸9\)(1)

Trường hợp 2: a=3k+1(k∈N)

Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+1-1\right)\cdot\left(3k+1+2\right)+12\)

\(=3k\cdot\left(3k+3\right)+12\)

\(=9k^2+9k+12⋮̸9\)(2)

Trường hợp 3: a=3k+2(k∈N)

Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+2-1\right)\left(3k+2+2\right)+12\)

\(=\left(3k+1\right)\left(3k+4\right)+12⋮̸9\)(3)

Từ (1), (2) và (3) suy ra ĐPCM

 

26 tháng 7 2017

a.Ư(7)={1,7}

*a+2=1

a=1-2

a=-1

*a+2=7 

a=7-2

a=5

=>a = -1,5

Mình chỉ biết A=5;B=2 còn N thì =25

15 tháng 6 2015

Ta có:

AxBxAxNxBxN=A^2xB^2xN^2=(AxBxN)^2=10x25x50=12500

=> AxBxN=\(\sqrt{12500}=???????kochiadc\)

 

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

avt755982_60by60.jpg sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````