K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:

$N=(a-2)(a+3)-(a-3)(a+2)=(a^2+a-6)-(a^2-a-6)=2a$ không có cơ sở để khẳng định đó là bội của $50$ bạn nhé.

29 tháng 8 2015

1) 

a) M = a(a + 2) - a(a - 5) - 7 = a(a + 2 - a + 5) - 7 = 7a - 7 = 7(a - 1) chia hết cho 7

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1} 6\)} khoanh vào khẳng định đúng  - khẳng định 1 : có 3 phần tử của A là bội của 5 - khẳng định 2 : có 3 phần tử của A là bội của 3 - khẳng định 3 : có 2 phần tử của A là bội của 3 - khẳng định 4 : có 2 phần tử của A là bội của 5 bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\) cho \(x\) là số thực thỏa...
Đọc tiếp

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1}< 6\)}

khoanh vào khẳng định đúng 

- khẳng định 1 : có 3 phần tử của A là bội của 5

- khẳng định 2 : có 3 phần tử của A là bội của 3

- khẳng định 3 : có 2 phần tử của A là bội của 3

- khẳng định 4 : có 2 phần tử của A là bội của 5

bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\)

cho \(x\) là số thực thỏa mãn \(\left[x\right]\div2=3\div6\), khoanh vào khẳng định đúng

- khẳng định 1 : (x - 1) × (x - 3) ≥ 0

- khẳng định 2 : (x - 1) × (x - 3) > 0

- khẳng định 3 : (x - 1) × (x - 3) ≤ 0

- khẳng định 4 : (x - 1) × (x - 3) < 0

bài 3 : cho tam giác ABC có \(\widehat{A}=62^o,\widehat{B}=52^o,AD\) là tia phân giác góc A, D thuộc BC. Tính số đo của góc ADC

bài 4 : cho 2 số \(x,y\) thỏa mãn \(x\div15=y\div6\) và \(xy=10\), khoanh vào khẳng định đúng

- khẳng định 1 : y2 < 30 < x2

- khẳng định 2 : x2 < y2 < 30

- khẳng định 3 : y2 < x2 < 30

- khẳng định 4 : x2 < 30 < y2

bài 5 : cho tam giác ABC, số đo góc A là 44o. Kẻ Bx, Cy lần lượt là tia đối của tia BA, CA. Tia phân giác của các góc xBC và BCy cắt nhau tại H. Tính số đo của góc BHC

bài 6 : cho tam giác ABC có \(\widehat{A}=60^o,\widehat{B}=40^o,D\) là điểm nằm trên cạnh BC sao cho \(\widehat{DAC}=2\times\widehat{BAD}\). Tia phân giác góc B cắt AD tại M. Tính số đo góc AMB

bài 7 : căn bậc ba số thực \(a\) là số thực \(x\) sao cho x3 = a. Kí hiệu \(x=\sqrt[3]{a}\). Gia trị của \(x\) thỏa mãn \(\sqrt[3]{27x+27}+\sqrt[3]{8x+8}=5\) là :

bài 8 : cho \(x,y\) là các số thực khác 0 thỏa mãn \(x\div2=y\div7.\) Khoanh vào đẳng thức đúng nhất

- đẳng thức 1 : \(\left(x-y\right)\div\left(x+y\right)=5\div\left(-9\right)\)

- đẳng thức 2 : \(\left(x-y\right)\div\left(x+y\right)=5\div9\)

- đẳng thức 3 : \(\left(x-y\right)\div\left(x+y\right)=\left(-9\right)\div5\)

- đẳng thức 4 : \(\left(x-y\right)\div\left(x+y\right)=9\div5\)

0

b) Đặt $A=$ $(a-1).(a+2) +12$

$ = a^2+2a-a-2+12$

$ = a^2+a+10$

$ = a^2+a+1+9$

Giả sử $ A \vdots 9$

$\to a^2+a+1+9 \vdots 9$

$\to a^2+a+1 \vdots 9$

$\to 4a^2+4a+4 \vdots 9$ hay  : $a^2+4a+4 \vdots 3$

$\to (2a+1)^2 + 3 \vdots 3$

$\to (2a+1)^2 \vdots 3 \to 2a+1 \vdots 3$

Mà $3$ là số nguyên tố nên :

$(2a+1)^2 \vdots 9$

Do đó : $(2a+1)^2 + 3 \not \vdots 9$

Từ đs suy ra $A$ không là bội của $9$.

Câu b) em làm tương tự em tách thành chia hết cho $7$ vì $7$ là số nguyên tố.

a) Trường hợp 1: a=3k(k∈N)

Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Vì 3k+1 và 3k+2 không chia hết cho 3 nên \(\left(3k-1\right)\left(3k+2\right)+12⋮̸3\)

\(\Leftrightarrow\left(3k-1\right)\left(3k+2\right)+12⋮̸9\)(1)

Trường hợp 2: a=3k+1(k∈N)

Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+1-1\right)\cdot\left(3k+1+2\right)+12\)

\(=3k\cdot\left(3k+3\right)+12\)

\(=9k^2+9k+12⋮̸9\)(2)

Trường hợp 3: a=3k+2(k∈N)

Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+2-1\right)\left(3k+2+2\right)+12\)

\(=\left(3k+1\right)\left(3k+4\right)+12⋮̸9\)(3)

Từ (1), (2) và (3) suy ra ĐPCM

 

13 tháng 8 2023

Ta có:

\(N=\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\)

\(N=a^2+3a-2a-6-\left(a^2+2a-3a-6\right)\)

\(N=a^2+a-6-a^2+a-6\)

\(N=2a\)

Mà: \(2a\) luôn chẵn với mọi a

\(\Rightarrow N\) chẵn với mọi a

N=(a+3)(a-2)-(a-3)(a+2)

=a^2-2a+3a-6-(a^2+2a-3a-6)

=a^2+a-6-a^2+a+6

=2a là số chẵn

16 tháng 8 2021

a) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\) 

vì n, n-1, n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\\ \Rightarrow\left(n^3-n\right)⋮3\)

b) \(n^5-n=n\left(n^4-1\right)\\ =n\left(n^2-1\right)\left(n^2+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n-2\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 5 ⇒ (n-2)(n-1)n(n+1)(n+2)⋮5

5⋮5⇒5(n-1)n(n+1)⋮5

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

\(\Rightarrow n^5-n⋮5\)

16 tháng 8 2021

50 bạn ơi

 

 

26 tháng 7 2017

a.Ư(7)={1,7}

*a+2=1

a=1-2

a=-1

*a+2=7 

a=7-2

a=5

=>a = -1,5

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6