Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A= (n+2)^2 + 1
Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5
=> A ko chia hết cho 8
b, n lẻ nên n có dạng 2k+1(k thuộc N)
<=> 5^n = 5^2k+1= = 5^2k . 5 = (4+1)^2k . 5 = (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1
=> B = 5^n - 1 chia hết cho 4
Sua de 1 chuc A=n2+4a-5 khong chia het cho 8 voi moi n le nhe !
Với n=0 =>A(n)=0 chia hết cho 8 với n lẻ
Giả sử A(n) chia hết cho 8 với n=2k+1 nghĩa là:
A(k)=(2k+1)^2+4*(2k+1)-5 chia hết cho 8
Ta cần chứng minh A(n) chia hết cho 8 với n=2k+3
Ta có: A(2k+3)=(2k+3)^2+4(2k+3)-5
= 4k^2+12k+9+8k+12-5
= (4k^2+4k+1)+(8k+4)-5+8k+16
= (2k+1)^2+4(2k+1)-5+8(k+2)
= A(2k+1)+8(k+2) chia hết cho 8
Vậy theo quy tắc quy nạp thì :
A(n)=n^2+4n-5 chia hết cho 8 với n lẻ
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.