Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(n^4-n^2\)
\(=n^2\left(n^2-1\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\cdot n\)
Vì \(n;n-1;n+1\) là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>\(A=n\cdot n\left(n-1\right)\left(n+1\right)⋮6\)
=>\(A=n^4-n^2⋮12\)
TH1: n=2k
\(A=n\left(n-1\right)\cdot\left(n+1\right)\cdot n\)
\(=2k\cdot n\left(n-1\right)\left(n+1\right)\)
\(n\left(n-1\right)\left(n+1\right)⋮6\)
=>\(2n\left(n-1\right)\left(n+1\right)⋮2\cdot6=12\)
=>\(A⋮12\)(1)
TH2: n=2k+1
\(A=n\left(n-1\right)\left(n+1\right)\cdot n\)
\(=\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\cdot\left(2k+1\right)\)
\(=2k\left(2k+1\right)\left(2k+2\right)\cdot\left(2k+1\right)\)
\(=4k\left(2k+1\right)\left(k+1\right)\cdot\left(2k+1\right)\)
Vì k;k+1 là hai số nguyên liên tiếp
nên \(k\left(k+1\right)⋮2\)
=>\(4k\left(k+1\right)⋮4\cdot2=8\)
=>\(A=4k\left(2k+1\right)\left(k+1\right)\left(2k+1\right)⋮8\)
mà \(A⋮6\)
nên \(A⋮BCNN\left(6;8\right)=24\)
=>A chia hết cho 12(2)
Từ (1),(2) suy ra \(A⋮12\forall n\in N\)
Ta có:n3-7n=(n3-n)-6n
=n(n2-1)-6n
=(n-1)n(n+1)-6n
Vì (n-1)n(n+1) là tích 3 số tự nhiên liên tiếp
=>(n-1)n(n+1) chia hết cho cả 3 và 2
Mà (3,2)=1
=>(n-1)n(n+1) chia hết cho 3.2=6
Mà 6n chia hết cho 6
=>(n-1)n(n+1)-6n chia hết cho 6
=>n3-7n chia hết cho 6 (đpcm)
Ta có:
n3 - 7n
= n3 - n - 6n
= n.(n2 - 1) - 6n
= n.(n - 1).(n + 1) - 6n
Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6; 6n chia hết cho 6
=> n3 - 7n chia hết cho 6 ( đpcm)
Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :
\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)
4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).
Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.
\(n^2-n=\left(n-1\right)n⋮2\)
Vậy \(n^2-n\) chia hết cho 2
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Chứng minh bằng phản chứng :
Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9
Khi đó đặt n = 9k (k thuộc N)
Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)
Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.
Ta có
A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004
Giả sử A chia hết cho 9 thì A = 9k
=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)
Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3
Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.
Hay (n + 5)(n + 2) chia hết cho 9.
Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)
Vậy không tồn tại số tự nhiên nào để A chia hết cho 9
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
Ta có : n2 + n + 1 = n2 + ( n + 1 ) = n . ( n+1 ) + 1
Giả sử n chia hết cho 9
=> n2 chia hết cho 9
=> ( n + 1 ) không chia hết cho 9
=> n2 + ( n + 1 ) không chia hết cho 9
=> điều giả sử là sai
Vậy với mọi sô tựn nhiên n thì n2 + n + 1 không chia hết cho 9