K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

5 tháng 11 2017

Goi d là\(ƯCLN\left(n+5;n+6\right)\)    \(d\in N\)

Ta có\(\hept{\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\Rightarrow n+6-x-5⋮d\Rightarrow1⋮d}\)

Mà \(d\in N\)

\(\Rightarrow d=1\)

Suy ra n+5 và n+6 là 2 số nguyên tố cùng nhau

14 tháng 7 2016

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

14 tháng 7 2016

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

23 tháng 11 2017

Giúp mình nhanh với ! Các bạn ơi !

16 tháng 12 2016

Gọi d là ƯC ( n + 5 ; 2n + 9 ) nên ta có :

 (n + 5) ⋮ d và (2n + 9) ⋮ d

=> 2(n + 5) và (2n + 9) ⋮ d

=> (2n + 10) ⋮ d và (2n + 9) ⋮ d

=> (2n + 10) - (2n + 9) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( n + 5; 2n + 9 ) = 1 => n + 5 và 2n + 9 là nguyên tố cùng nhau 

=> đpcm

16 tháng 12 2016

Gọi UCLN( n + 5 ; 2n +9 ) là d

Theo bài ra , ta có :

            2n + 9 chia hết cho d

          n + 5 chia hết cho d => 2n +10 chia hết cho d

mà ( 9 , 10 ) = 1 => ( 2n +10 ; 2n +9 ) = 1 => ( n + 5 ; 2n + 9 ) = 1

Vậy n +5 và 2n + 9 là 2 số nguyên tố cùng nhau

                ( đpcm )

8 tháng 6 2023

Gọi \(ƯCLN\left(n+3,2n+5\right)\) là \(d\left(d\in N^{\circledast}\right)\) 

\(=>n+3⋮d;2n+5⋮d\)

\(=>2\left(n+3\right)⋮d;2n+5⋮d\)

\(=>2n+6⋮d;2n+5⋮d\)

\(=>\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(=>1⋮d\)

\(=>d=1\)

 Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với \(n\in N\)

8 tháng 6 2023

Gọi Ư���(�+3,2�+5)ƯCLN(n+3,2n+5) là �(�∈�⊛)d(dN) 

=>�+3⋮�;2�+5⋮�=>n+3d;2n+5d

=>2(�+3)⋮�;2�+5⋮�=>2(n+3)d;2n+5d

=>2�+6⋮�;2�+5⋮�=>2n+6d;2n+5d

=>(2�+6)−(2�+5)⋮�=>(2n+6)(2n+5)d

=>1⋮�=>1d

=>�=1=>d=1

 Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với �∈�nN

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

18 tháng 12 2014

dk kái đó gọi là chứng minh phản chứng

 

9 tháng 12 2018

-Gọi d là ƯCLN (8n + 7, 6n + 5 )

\(8n+7⋮d\Rightarrow3\left(8n+7\right)⋮d\Rightarrow24n+21⋮d\) 

\(6n+5⋮d\Rightarrow4\left(6n+5\right)⋮d\Rightarrow24n+20⋮d\)

\(\left[\left(24n+21\right)-\left(24n+20\right)\right]⋮d\)

\(\left[24n+21-24n-20\right]⋮d\)

\(1⋮d\Rightarrow d=1\)

Vậy 8n + 7 và 6n + 5 là 2 số nguyên tố cùng nhau

PP/ss: Hoq chắc