Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3
=> A chia hết cho 3
=> 9.A chia hết cho 27
=>9.A-27 chia hết cho 27
=>10^n + 18n -28 chia hết cho 27
=>ĐPCM
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
a) Đề sai, phải là 384 mới đúng
Đặt \(A=n^4-10n^2+9\)
\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)
\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^2-9\right)\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì n lẻ nên n = 2k + 1 ( k thuộc Z )
Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)
A = 16k( k + 1)( k - 1)( k + 2)
Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3
=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8
=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)
=> A chia hết cho 16.24 = 384 ( Đpcm )
Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)
b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9
=> 10n + 18n + 9 không chia hết cho 27
\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)
\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)
\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)
\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)
(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24
(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24
biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24