K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Khi n=1 thì 1^3-48*1=1-48=-47 ko chia hết cho 48

=>Đề sai rồi bạn

25 tháng 9 2017

A = n3-3n2-n+3 = n2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
Vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A \(⋮\) 16(1)
mặt khác:
A = n3-3n2-n+3 = n3 - n - 3(n2 - 1) = n(n+1)(n-1) - 3(n2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) 3 => A \(⋮\) 3
n = 3k + 1 => (n -1) \(⋮\) 3 => A \(⋮\) 3
n = 3k + 2 => (n+1) = 3k + 3 \(⋮\) 3
=> A \(⋮\) 3 (2)

Từ (1) và (2) => A \(⋮\) 3.16 = 48 (3; 16 là 2 số nguyên tố cùng nhau).

25 tháng 9 2017

Ta có:

\(n^3-3n^2-n+3\)

\(=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)

Thay \(n=2k+1\), ta có:

\(\left(2k+1+1\right)\left(2k\right)\left(2k-2\right)\)

\(=2k.2.2.k.\left(k+1\right)\left(k-1\right)\)

\(=8\left(k-1\right)k.\left(k+1\right)\)

Ta thấy k, k-1 ; k+1 là 3 số tự nhiên liên tiếp, mà 3 số tự nhiên liên tiếp thì chia hết cho 6.

=> \(n^3-3n^2-2+3⋮48\) với mọi số n lẻ.

Vậy ...

18 tháng 9 2019

Tham khảo cách làm tương tự: Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

2 tháng 10 2020

Thử với n = 2 thì đề sai, mà hình như với mọi n chẵn thì đề sai :v 

26 tháng 9 2017

a) \(n^2+4n+3\)

Vì n là số lẻ nên n : 2 dư 1

Gọi n = 2k + 1

Thay n = 2k + 1 vào \(n^2+4n+3\)

Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)

Thay n = 2k + 1 vào (1)

=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)

Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp

=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)

=> \(4\left(k+2\right)\left(k+1\right)⋮8\)

=> đpcm

26 tháng 9 2017

a) Ta có:

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)

Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.

=> \(n^3+4n+3⋮4.2=8\)

Vậy ...

18 tháng 9 2019

Ta có: \(n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\text{ (1)}\)

\(\text{Vì n = 2k + 1 (số lẻ) nên }\hept{\begin{cases}n+3=2k+1+3=2k+4\\n-1=2k+1-1=2k\\n+1=2k+1+1=2k+2\end{cases}}\)

\(\text{(1) = }\left(2k+4\right)\left(2k\right)\left(2k+2\right)\)

\(=2.\left(k+2\right).2k.2.\left(k+1\right)\)

\(=8k.\left(k+2\right)\left(k+1\right)\)

\(\text{Ta thấy }8k\left(k+1\right)\left(k+2\right)\text{chia hết cho 2 và chia hết cho 8}\)

\(\text{Nên }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 16 (8 x 2 =16) (2)}\)

\(\text{Mà }k\left(k+1\right)\left(k+2\right)\text{ là tích của 3 số tự nhiện liên tiếp }\)

\(\text{Nên }k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3}\)

\(\text{Hay }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3 (3)}\)

\(\text{Từ (2) và (3) suy ra: }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 48 (16 x 3 = 48)}\)

                                \(\text{hay }n^3+3n^2-n-3\text{ chia hết cho 48 }\left(\text{ĐPCM}\right)\)

18 tháng 9 2019

Ta có:

 \(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Với n=2k+1. Do đó ta có:

\(n^3+3n^2-n-3=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)

\(=8\left(k+2\right)\left(k+1\right)k\)

Vì \(k;\left(k+1\right)\)là hai số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)

Vì \(k;\left(k+1\right);\left(k+2\right)\)là ba số tự nhiên liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\)

mà (2; 3) =1

=> \(k\left(k+1\right)\left(k+2\right)⋮6\)

=> \(8k\left(k+1\right)\left(k+2\right)⋮48\)

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.