K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đồ ngu, người ta nói chứng minh mà 5 ở đâu đây

30 tháng 10 2016

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 

Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn

a: A=3n^2-n-3n^2+6n=5n chia hết cho 5

b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6

c: =n^3+2n^2+3n^2+6n-n-2-n^3+2

=5n^2+5n

=5(n^2+n) chia hết cho 5

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

28 tháng 8 2019

Có: (2 - n) ( n2 - 3n + 1) + n(n2 + 12) + 8

= 2n2 - 6n + 2 - n3 + 3n2 - n + n3 + 12n + 8

= 5n2 + 5n + 10

= 5(n2 + n + 2). Do 5 chia hết cho 5 => 5(n2 + n + 2) chia hết cho 5

hay (2 - n) ( n2 - 3n + 1) + n(n2 + 12) + 8 chia hết cho 5 với mọi n thuộc Z.

=> đpcm

1 tháng 7 2021

(2m-3)(3n-2)-(3m-2)(2n-3)

=6mn-4m-9n+6-(6mn-9m-4n+6)

=6mn-4m-9n+6-6mn+9m+4n-6

=5m-5n

=5(m-n). Vì 5 chia hết cho 5

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi số nguyên m và n.

Ta có: \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)

\(=6mn-4m-9n+6-6m^2+9m+4n-6\)

\(=5m-5n⋮5\)

25 tháng 6 2015

Neus không sai ddf thì tip nha

= 5n^2 + 5n

= 5n ( n+1)

Vì n và n+ 1 là hai số tự nhiên liên típ 

=> n(n+1) chia hét cho 2

=> 5n(n+1) chia hét cho 2.5 hay 5n(n+1) chia hết cho 10

23 tháng 10 2016

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)