Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
Co Gai De Thuong
A = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x ( 1 + 2 + 22 + 23 + 24 )
= 2 x 31 + ... + 296 x 31
= 31 ( 2 + ... + 296 )
Vậy A chia hết cho 31
A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100
A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]
A = 62 + ... + 295.62
A = 2.31 + .... + 295.2.31
A = 31.2.[20 + 25 + ... +295]
=> A \(⋮31\)
n = 1 thì không chia hết cho 2 và 5