K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 10 2021

\(3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=40\left(3+...+3^{2009}\right)⋮40\)

26 tháng 10 2021

rrrrr

12 tháng 4 2015

t thử = máy tính rùi nhưng k đk

 

6 tháng 2 2017

Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4

        5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4

        5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4

suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4

Vậy 5^n - 1 chia hết cho 4 với n thuộc N

tk mk nha

9 tháng 2 2017

5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1

=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4

21 tháng 6 2017

Co Gai De Thuong

A = 2 + 22 + 23 + ... + 299 + 2100

   = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

   = 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x  ( 1 + 2 + 22 + 23 + 2)

   = 2 x      31                          + ... +  296 x 31

   = 31 ( 2 + ... + 296 )

Vậy A chia hết cho 31       

21 tháng 6 2017

A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100

A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]

A = 62 + ... + 295.62

A = 2.31 + .... + 295.2.31

A = 31.2.[20 + 25 + ... +295]

=> A \(⋮31\)

18 tháng 3 2016

xin lỗi qua rồi