Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(14n+3;21n+5)
=>42n+9-42n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Gọi \(d=ƯC\left(3n+1;9n+6\right)\) với \(d\ge1\)
Do \(\left\{{}\begin{matrix}3n+1⋮̸3\\9n+6⋮̸3\end{matrix}\right.\) ;\(\forall n\in N\Rightarrow d\ne3\)
Ta có:
\(\left\{{}\begin{matrix}3n+1⋮d\\9n+6⋮d\end{matrix}\right.\) \(\Rightarrow9n+6-3\left(3n+1\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow\left[{}\begin{matrix}d=3\\d=1\end{matrix}\right.\)
Mà \(d\ne3\Rightarrow d=1\)
\(\Rightarrow\dfrac{3n+1}{9n+6}\) tối giản với mọi \(n\in N\)
a; P = \(\dfrac{6n+5}{3n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 6n + 5 và 3n + 2 là d
Ta có: \(\left\{{}\begin{matrix}6n+5\\3n+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6n+5⋮d\\2.\left(3n+2\right)⋮d\end{matrix}\right.\)
6n + 5 - 2.(3n + 2) ⋮ d
6n + 5 - 6n - 4 ⋮ d
(6n - 6n) + 1 ⋮ d
1 ⋮ d
d = 1
Hay P = \(\dfrac{6n+5}{3n+2}\) là phân số tối giản
b; P = \(\dfrac{6n+5}{3n+2}\) ( n \(\in\) N)
P = \(\dfrac{6n+4+1}{3n+2}\)
P = \(\dfrac{2.\left(3n+2\right)}{\left(3n+2\right)}\) + \(\dfrac{1}{3n+2}\)
P = 2 + \(\dfrac{1}{3n+2}\)
Pmax ⇔ \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất
vì n \(\in\) N; \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất khi và chỉ khi
3n + 2 = 1 ⇒ n = - \(\dfrac{1}{3}\) (loại)
Vậy không có giá trị nào của n là số tự nhiên để P đạt giá trị lớn nhất.
Gọi d là ƯCLN(n+1;n+2)
Ta có n+1\(⋮\)d;n+2\(⋮\)d
=>[(n+2)-(n+1)]\(⋮\)d
=>[n+2-n-1]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(n+1;n+2)=1 nên phân số \(\frac{n+1}{n+2}\) luôn tối giản(nEN*)
Gọi d là ƯC( n+1; n+2)
=> (n+ 1) \(⋮\)d và (n+ 2) \(⋮\)d
=> ( n+2 - n-2)\(⋮\) d
=> 1\(⋮\)d
=> d=1
=> \(\frac{n+1}{n+2}\) là phân số tối giản.
Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của n + 5 và n + 4
=> n + 5 và n + 4 chia hết cho d
=> (n + 5) - (n + 4) chia hết cho d
=> 1 chia hết cho d => d = 1
Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau
=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)
1.
a) \(A=2+\frac{1}{n-2}\)
\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)
b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)
\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)
\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy A là phân số tối giản.
2.
- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )
- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )
- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3
Vậy p - 2014 là hợp số
a,Gọi d=(14n+3;21n+5)
=>14n+3 (2) và 21n+5 chia hết cho d
=>70n+15 và 63n+15 chi hết cho d => 7n chia hết cho d => 14n chia hết cho d (1)
Từ (1) và (2) => 3 chia hết cho d => d= 3 hoặc 1
+, Nếu d=3 => 21n+5 chia hết cho 3 => 5 chia hết cho 3 (vô lý) => d=1 =>đpcm
b, Gọi d=(16n+5;24n+7)
=> 16n+5 (4) và 24n+7 chia hết cho d
=>8n+2 chia hết cho d =>16n+4 chia hết cho d (3)
Từ (3) và (4) => d=1
gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )
\(\Rightarrow\)21n + 4 \(⋮\)d \(\Rightarrow\)2 . ( 21n + 4 ) \(⋮\)d \(\Rightarrow\)42n + 8 \(⋮\)d ( 1 )
\(\Rightarrow\)14n + 3 \(⋮\)d \(\Rightarrow\)3 . ( 14n + 3 ) \(⋮\)d \(\Rightarrow\)42n + 9 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)( 42n + 9 ) - ( 42n + 8 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1 mà ƯCLN ( 21n + 4 ; 14n + 3 ) = d nên phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
Gọi ƯCLN \(\left(n+5\right)\) và \(\left(n+4\right)\) là : \(a\)
\(\Rightarrow\left(n+5\right)⋮a\) và \(\left(n+4\right)⋮a\)
\(\Rightarrow[\left(n+5\right)-\left(n+4\right)]⋮d\)
\(\Rightarrow\left(n+5-n-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\) hoặc \(d=-1\)
Vậy phân thức đã cho đã tối giản \(\left(n\in N\right)\)