Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề
\(P=9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\)
haizzz,em đã nghĩ sai đề từ khi mới làm ( hèn chi làm hoài ko ra )
a ) Ta có : \(f\left(x\right)=4x^2-4x+3=4x^2-4x+1+2\)
\(=\left(2x-1\right)^2+2\ge2>0\forall x,x\in R\)
b ) Ta có : \(g\left(x\right)=2x-x^2-7=-x^2+2x-7\)
\(=-x^2+2x-1-8\)
\(=-\left(x^2-2x+1\right)-8\)
\(=-\left(x-1\right)^2\le-8< 0\forall x,x\in R\)
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{4}{7}x_1+3-\dfrac{4}{7}x_2-3}{x_1-x_2}=\dfrac{4}{7}>0\)
=>Hàm số đồng biến với mọi x
\(2x^2+y^2+10x-4y\ge2xy-13\) (1)
\(\Leftrightarrow2x^2+y^2+10x-4y-2xy+13\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+6x+9\ge0\)
\(\Rightarrow\left(x-y\right)^2+2.\left(x-y\right).2+2^2+x^2+2.x.3+3^2\ge0\)
\(\Rightarrow\left(x-y+2\right)^2+\left(x+3\right)^2\ge0\)(2)
Ta thấy (2) luôn đúng mà \(\left(2\right)\Leftrightarrow\left(1\right)\)nên (1) luôn đúng
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x-y+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)