Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)
do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6
mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6
vậy A chia hết cho 6
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
bai nay chi can tach ra thanh mot nhom chia het cho 5 roi suy ra mot nhom chia het cho 5 roi minh phan h a^4-b^4 thanh nhan tu
\(a^5+29a=a^5-a+30a\)
Theo Fermat nhỏ thì \(a^5-a⋮5\) mặt khác \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)
nên \(a^5+29a⋮30\) ( điều phải chứng minh )
\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m
\(a^4+6a^3+11a^2+6a\) chia hết cho 24
\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
Ta nhận thấy đây là tích của 4 số TN liên tiếp
Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3
=> tích của 4 số TN liên tiếp chia hết cho 3x8=24
Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)