Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath
2, \(2n\left(16-n^4\right)=2n\left(1-n^4+15\right)=2n\left(1-n^2\right)\left(1+n^2\right)+30n=2n\left(1-n\right)\left(1+n\right)\left(n^2-4+5\right)+30n\)
\(=-2n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+10n\left(n-1\right)\left(n+1\right)=-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)
Vì n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 3;5
Mà (3,5) = 1
=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 15
=> -2n(n-1)(n+1)(n-2)(n+2) chia hết cho 2.15 = 30 (1)
Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
=>10n(n-1)(n+1) chia hết cho 10.3 = 30 (2)
Từ (1) và (2) => \(-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\) hay \(2n\left(16-n^4\right)⋮30\left(đpcm\right)\)
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
Xét hiệu \(\left(x^5+y^5+z^5\right)-\left(x+y+z\right)=\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)\)
Ta có: \(\hept{\begin{cases}x^5-x⋮30\\y^5-y⋮30\\z^5-z⋮30\end{cases}}\) (tự chứng minh)
=>\(\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)⋮30\)
Mặt khác \(x+y+z⋮30\)
=>\(x^5+y^5+z^5⋮30\) (đpcm)
Ta có :
\(a^5-a\)
\(=a\left(a^4+1\right)\)
\(=a\left[\left(a^2\right)^2+1^2\right]\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-2^2+5\right)\)
\(=a\left(a+1\right)\left(a-1\right)\left(a-2\right)\left(a+2\right)+5\left(n-1\right)\left(n+1\right)\) chia hết cho 5
Mà (2, 3, 5) = 1 \(\Rightarrow a^5-a\) chia hết cho 2, 3 và 5
\(\Rightarrow a^5-a\) chia hết cho 30
\(\Rightarrow\left(đpcm\right)\)
Cách khác:
Ta có: \(a^5-a\)
\(=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)\cdot\left(a^2+1\right)\)
Vì a-1 và a là hai số tự nhiên liên tiếp nên \(\left(a-1\right)\cdot a⋮2\)
\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)
mà \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(Do a-1;a;a+1 là ba số tự nhiên liên tiếp)
nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)
hay \(a^5-a⋮6\)
mà \(a^5-a⋮5\)(Theo định lí Fermat nhỏ, ta có: Nếu \(a^p-a\) có p là số nguyên tố thì \(a^p-a⋮p\), 5 là số nguyên tố)
nên \(a^5-a⋮30\)(đpcm)
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
Đề bài phải có điều kiện a là số nguyên hay số tự nhiên...gì đó chứ bạn!?
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Dễ thấy \(\left(a-1\right)a\left(a+1\right)\) là tích của 3 số nguyên liên tiếp
=>\(\left(a-1\right)a\left(a+1\right)\) chia hết cho 2 và 3
<=> \(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3 (1)
Xét các trường hợp:
+) a=5k => \(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)=\left(5k-1\right)5k\left(5k+1\right)\left[\left(5k\right)^2+1\right]⋮5\) (\(k\in Z\))
+) a=5k+1 => (a-1)a(a+1)(a2+1)=(5k+1-1)(5k+1)(5k+1+1)[(5k+1)2+1]=5k(5k+1)(5k+2)[(5k+1)2+1]\(⋮5\)
+) a=5k+2 => (a-1)a(a+1)(a2+1)=(5k+2-1)(5k+2)(5k+2+1)[(5k+2)2+1]=(5k+1)(5k+2)(5k+3)(25k2+20k+5)\(⋮5\)
+) a=5k+3 => (a-1)a(a+1)(a2+1)=(5k+3-1)(5k+3)(5k+3+1)[(5k+3)2+1]=(5k+2)(5k+3)(5k+4)(25k2+30k+10)\(⋮5\)
+) a=5k+4 => (a-1)a(a+1)(a2+1)=(5k+4-1)(5k+4)(5k+4+1)[(5k+4)2+1]=(5k+3)(5k+4)(5k+5)[(5k+4)2+1]\(⋮5\)
=>\(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) chia hết cho 5 (2)
Từ (1) và (2) => đpcm
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
m^5 - m = m (m^4 -1 )
=m (m^2-1)(m^2+1)
=m(m-1)(m+1)(m^2 - 4 +5)
=m(m-1)(m+1)(m^2-4) + m(m-1)(m+1)5
= (m-2)(m-1)m(m+1)(m+2)+ m(m-1)(m+1)5
Vì (m-2)(m-1)m(m+1)(m+2) chia hết cho 30
và m(m-1)(m+1)5 chia hết cho 30
Nên (m-2)(m-1)m(m+1)(m+2)+ m(m-1)(m+1)5 chia hết cho 30
hay m^5-m chia hết cho 30
m^5 - m = m (m^4 -1 )
=m (m^2-1)(m^2+1)
=m(m-1)(m+1)(m^2 - 4 +5)
=m(m-1)(m+1)(m^2-4) + m(m-1)(m+1)5
= (m-2)(m-1)m(m+1)(m+2)+ m(m-1)(m+1)5
Vì (m-2)(m-1)m(m+1)(m+2) chia hết cho 30
và m(m-1)(m+1)5 chia hết cho 30
Nên (m-2)(m-1)m(m+1)(m+2)+ m(m-1)(m+1)5 chia hết cho 30
hay m^5-m chia hết cho 30