K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(m^2-m\right)x=m^2-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

23 tháng 8 2017

Thay m = - l vào vế trái phương trình :

- 1 2 + 5 - 1 + 4 x 2 = 0 x 2

Vế phải phương trình : - l + 4 = 3

Phương trình đã cho trở thành : 0 x 2  = 3 không có giá trị nào của x thỏa mãn phương trình. Vậy phương trình vô nghiệm.

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

29 tháng 4 2017

a) x=3 có: 3(m-1) -m+5 =0 

3m-3-m+5 =0 => m = -1

b) nếu m=1 có: (m-1)x = 0 => (m-1)x -m +5 = 0 => 4=0 vô lý

c) (m-1)x -m+5 =0 => x = (m-5)/(m-1)

+ nếu m=1 vô nghiệm

+ m khác 1 pt có nghiệm x =(m-5)/(m-1)

29 tháng 4 2017

chỉ biện luận mỗi vậy thôi hả ???????

NV
23 tháng 4 2021

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

31 tháng 3 2019

Thay m = - 2 vào vế trái phương trình :

- 2 2 + 5 - 2 + 4 x 2 = - 2 x 2

Vế phải phương trình: - 2 + 4 = 2

Phương trình đã cho trở thành: - 2 x 2 = 2 không có giả trị nào của x thỏa mãn vì vế trái âm mà vế phải dương. Vậy phương trình vô nghiệm.

Thay m = - 3 vào về trái phương trình:

- 3 2 + 5 - 3 + 4 x 2 = - 2 x 2

Vế phải phương trình : - 3 + 4 = l

Phương trình đã cho trở thành :  - 2 x 2 = 1  không có giả trị nào của x thỏa mãn vì vế trái là số âm mà vế phải là số dương. Vậy phương trình vô nghiệm.