Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
2C= 1 - \(\frac{1}{3^{99}}\)< 1
\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)
Điều Phải Chứng Minh
Giải:
a) \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow2A=3\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Leftrightarrow2A=1-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow A=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
b) Để B nguyên thì:
\(\dfrac{x+3}{x+2}\in Z\)
\(\Leftrightarrow x+3⋮x+2\)
\(\Leftrightarrow x+2+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\) (thõa mãn)
Vậy ...
a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004
B= 1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005
suy ra 2B=1-1/3^2005
suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)
suy ra B=1/2-1/3^2005/2 bé hơn 1/2
từ đấy suy ra B bé hơn 1/2
Đây nha
Ta có:
(1−�2)(1−�)>0(1−a2)(1−b)>0
⇔1+�2�>�2+�>�3+�3(1)⇔1+a2b>a2+b>a3+b3(1)
(Vì 0<�,�<10<a,b<1)
Tương tự ta có:
\hept{1+�2�>�3+�3(2)�+�2�>�3+�3(3)\hept{1+b2c>b3+c3(2)a+c2a>c3+a3(3)
Cộng (1), (2), (3) vế theo vế ta được
2(�3+�3+�3)<3+�2�+�2�+�2�2(a3+b3+c3)<3+a2b+b2c+c2a
B=1/2+(1/2)^2+................+(1/2)^100
=>1/2B=(1/2)^2+(1/2)^3+............+(1/2)^101
=>1/2B-B=(1/2^2+..............+1/2^101)-(1/2+..............+1/2^100)
=>1/2B-B=1/2^2+..............+1/2^101-1/2-..............-1/2^100
=>1/2B-B=1/2^101+(1/2^2-1/2^2)+................+(1/2^100-1/2^100)-1/2
=>1/2B-B=1/2^101+0+............+0-1/2
=>-1/2B=1/2^101-1/2
=>B=1/2^101-1/2
__________
-1/2
=>B<1
Ta có:
\(M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^{98}}\)
\(\Rightarrow M=\left(1-\frac{1}{3^{98}}\right):2\)
\(\Rightarrow M=\frac{1}{2}-\frac{1}{3^{98}.2}< \frac{1}{2}\)
\(\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)
cảm ơn bạn nha