Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4
4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)
4A = n(n+1)(n+2)(n+3)
A = n(n + 1)(n+2)(n + 3) : 4
mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
Với n = 1 => Ta có: (1+1) = 2 chia hết cho 21
Giả sử n = k thì (k+1).(k+2)...2k chia hết cho 2k
Cần chứng minh: (k+1+1).(k+1+2)...2(k+1) chia hết cho 2k+1
Ta có: (k+1+1).(k+1+2)...2(k+1) = (k+2).(k+3)....2k.2(k+1) = 2.(k+1).(k+2)...2k chia hết cho 2.2k = 2k+1
Vậy (n+1)(n+2)....2n chia hết cho 2n (với mọi n thuộc N*)
Nhân \(\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n\) với \(2.4.6.8...2n\)
Ta được: \(\left(2.4.6...2n\right)\left(n+1\right)\left(n+2\right)...2n\)
=\(\left(1.2.3..n\right).2^n\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n⋮2^n\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n⋮2^n\)