K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Ta có:\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\) (*)

Lại có: \(\left(ab-bc\right)^2\ge0\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\Leftrightarrow a^2b^2+b^2c^2\ge2ab^2c\)

Tương tự \(b^2c^2+c^2a^2\ge2abc^2;c^2a^2+a^2b^2\ge2a^2bc\)

Cộng từng vế của 3 BĐT ta được:\(2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (**) 

Từ (*),(**) \(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge abc\left(a+b+c\right)+2abc\left(a+b+c\right)=3abc\left(a+b+c\right)\)

=>đpcm

9 tháng 6 2017

đăng 2 lần ở 2 web làm gì rồi COPIER lại đào lên nhai lại

9 tháng 6 2017

\(BDT\Leftrightarrow\left(ab+bc+ac\right)^2\ge3a^2bc+3ab^2c+3abc^2\)

Đặt \(x=ab;y=bc;z=ac\) thì có:

\(\left(x+y+z\right)^2\ge3xy+3yz+3xz\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi \(a=b=c\)

10 tháng 6 2017

\(\left(ab+ac+bc\right)^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)-3abc\left(a+b+c\right)\ge0\)\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2-a^2bc-ab^2c-abc^2\ge0\)Nhân cả 2 vế cho 2 ta được

\(\Rightarrow2a^2b^2+2a^2c^2+2b^2c^2-2a^2bc-2ab^2c-2abc^2\ge0\)\(\Leftrightarrow\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(a^2c^2-2abc^2+b^2c^2\right)\ge0\)\(\Rightarrow\left(ab-ac\right)^2+\left(ab-bc\right)^2+\left(ac-bc\right)^2\ge0\) Đúng với mọi a , b , c

9 tháng 2 2020

Hướng làm nè : 

Giả sử : \(a=min,c=max\)

Thì : \(t=c,k=a\)

Ta đặt : \(b=a+x,c=a+y\left(x\le y\right)\)

Rồi thay vào BĐT cần chứng minh, phá tung ra là được :))

P/s : Mày ra đề làm dài khiếp á !!

9 tháng 2 2020

 ミ★ Đạt ★彡m làm rõ đi:)) Mà tao đoán cách của m phá ra xong m sẽ ko biết nhóm cho thích hợp đâu:P Cái điều kiện \(x\le y\) sẽ gây khó khăn cho m, cách tao khác.

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Dấu => thứ hai từ dưới lên bạn bị nhầm rồi.

Thứ nhất, nên dùng dấu <=> thay vì dấu => 

Thứ hai, sau dấu => phải là $(a-b)^2+(b-c)^2+(c-a)^2\geq 0$ mới đúng nhé bạn 

16 tháng 5 2019

1 ) (a+b+c)^2 >= 3(ab+bc+ac)

<=> a^2 + b^2 + c^2 >= ab + bc + ac

<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac

<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0 

<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0 

( luôn đúng với mọi a ; b ; c )

( đpcm )

2 ) P =  \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)

AD BĐT Cô - si và BĐT phụ đã cmt ở trên  ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra <=> a = b = c 

16 tháng 5 2019

Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ

đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)

\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu " = " xảy ra <=> a=b

1 tháng 2 2019

Ta có:\(3\left(\frac{ab+bc+ca}{a+b+c}\right)^2\le3\left[\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}\right]^2\)\(=3\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)(1)

Mặt khác:\(\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2\ge2.\frac{ab}{c}.\frac{bc}{a}=2b^2\)(2)

Tương tự ta cũng có:\(\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge2c^2\)(3);\(\left(\frac{ca}{b}\right)^2+\left(\frac{ab}{c}\right)^2\ge2a^2\)(4)

Cộng theo vế (1),(2),(3) ta được:\(2\left[\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\right]\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge a^2+b^2+c^2\)(5)

Từ (1) và (5) suy ra điều phải chứng minh.Dấu "=" xảy ra khi \(a=b=c\)

1 tháng 2 2019

..Cộng theo vế (2),(3),(4) nhé :>

NV
6 tháng 6 2020

\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(a=b=c\)

14 tháng 5 2017

\(A=\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}\)

\(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

..................................

\(A=\dfrac{a^2+b^2-2ab}{ab}+\dfrac{b^2-2ab+c^2}{bc}+c^2+a^2-\dfrac{2ca}{ca}\)

\(A=\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}-2\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}-2\right)=\dfrac{\left(b+c\right)}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}-6\)

\(A=\left[\dfrac{\left(b+c\right)}{a}+1\right]+\left[\dfrac{\left(a+c\right)}{b}+1\right]+\left[\dfrac{\left(a+b\right)}{c}+1\right]-9\)

\(A=\dfrac{\left(a+b+c\right)}{a}+\dfrac{\left(a+b+c\right)}{b}+\left[\dfrac{\left(a+b+c\right)}{c}\right]-9\)

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-9\)

Ket luan

\(A\ne B\) => đề sai--> hoặc mình công trừ sai

16 tháng 5 2017

bạn đúng bạn đúng là mình chép sai à cảm ơn nhiều