Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh vào đây nhé, link này có bài của anh này, chúc anh học tốt !
Câu hỏi của Tùng Lâm Phạm - Toán lớp 9 | Học trực tuyến
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\frac{1}{10}}+10\right)=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\frac{3\sqrt{10}}{10}-10\)
\(=-3\sqrt{10}+10-\frac{3\sqrt{10}}{10}-10=-3\sqrt{10}-\frac{3\sqrt{10}}{10}=-3\sqrt{10}\left(1+\frac{1}{10}\right)=\frac{-33\sqrt{10}}{10}=-3,3\sqrt{10}\)
Biến đổi vế trái
\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)
\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)
\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)
\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)
Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh
\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}=8\)
\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2=8\)
\(\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\)
\(18-6\sqrt{5}+6\sqrt{5}-10=8\)
8=8 ( luôn đúng )
\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\cdot\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{2}\cdot\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)^2\)
\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)
\(=2\cdot\left(3+\sqrt{5}\right)\cdot\left(3-\sqrt{5}\right)\)
\(=2\cdot\left(9-5\right)\)
\(=2-4=8\)
ko bít
Mình chịu bạn nhé, muốn giúp mà ko đc.