Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21^30 + 39^21 = (3.7)^30 + (3.13)^21 = 3^30 . 7^30 + 3^21 ... chia hết cho 9
21^30 + 39^21
21 chia 5 dưa 1 => 21^30 chia 5 dư 1
39 chia 5 dư 4 => 39^2 chia 5 dư 1
39^21 = 39 . 39^20 = 39 . (39^2)^10
(39^2)^10 chia 5 dư 1
39 chia 5 dư 4 => 39 . 39^20 chia 5 dư 4
21^30 + 39^21 chia hết cho 5
Vì ƯCLN ( 5;9 ) = 1
=> 21^30 + 39^21 chia hết cho 5.9 = 45
Vậy 21^30 + 39^21 chia hết cho 45 ( đpcm )
21^30 + 39^21=(3.7)^30+(3.13)^21=3^30.7^30+3^21.... chia hết cho 9.
21^30 + 39^21
21 chia cho 5 dư 1 => 21^30 chia cho 5 dư 1.
39 chia cho 5 dư 4 => 39^2 chia cho 5 dư 1.
39^21=39.39^20=39.(39^2)^10
(39^2)^10 chia cho 5 dư 1
39 chia cho 5 dư 4 =>39.39^20 chia cho 5 dư 4
21^30 + 39^21 chia hết cho 5.
Do UCLN (5,9)=1 =>21^30 + 39^21 chia hết cho 5.9=45.
trời đất dung hoa vạn vật sinh sôi con mẹ mày lôi thôi đầu xanh mỏ đỏ gặp cỏ thay cơm đầu tóc bờm sờm khạc đờm tung tóe mà TAO ĐỊT CON MẸ MÀY NHƯ LỒN TRAU LỒN CHÓ LỒN BÓ XI MĂNG LỒN CHẰNG MẠNG NHỆN MÀ LỒN BẸN LÁ KHOÁI LỒN KHAI LÁ MIT LỒN ĐÍT LỒN TƠM LỒN TƠM LỒN ĐẬM LỒN GIA MAI LỒN ỈA CHẢY LỒN NHẨY HIPHOP LỒN LÔ XỐP LỒN HÀNG HIỆU LỒN HÀNG TRIỆU CON SÚC VẬT MÀ NÓ ĐÂM VÀO CÁI CON ĐĨ MẸ MÀY TỪ TRÊN CAO MÀ LAO ĐẦU XUỐNG ĐẤT ĐỊT LẤT PHẤT NHƯ MƯA RƠI
Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)
\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)
\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)
\(\Leftrightarrow-5< x< -\dfrac{1037}{1260}\)
=>\(x\in\left\{-4;-3;-2;-1\right\}\)
2(139+239+...+n39)
=2(1+2+3+...+n)(138-2.137+3.137-...+n38) (nhị thức newton)
=2{[(n+1)n]/2}(138-2+3-...+n38)
=n(n+1)(138-2+3-...+n38)
=(n2+n)(1-2+3-...+n38) chia hết cho(n2+n)
Bài1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
Ta có:
\(\left(-8\right)^9=-2^{27}\)
\(\left(-32\right)^5=\left(-8.4\right)^5=-2^{27}.2^{10}\)
Vì \(-2^{27}.10< -2^{27}\) nên \(\left(-8\right)^9>\left(-32\right)^5\)
Các câu sau tương tự
Bài2:
\(a,2\left|x-1\right|-3x=7\)
+)Xét \(x\ge1\Rightarrow\left|x-1\right|=x-1\)
Do đó:
\(2\left(x-1\right)-3x=7\\ \Leftrightarrow2x-2-3x=7\\ \Leftrightarrow-x=9\\ \Leftrightarrow x=-9\left(loại\right)\)
+)Xét \(x< 1\Rightarrow\left|x-1\right|=1-x\)
Do đó:
\(2\left(1-x\right)-3x=7\\ \Leftrightarrow2-2x-3x=7\\ \Leftrightarrow-5x=5\\ x=-1\left(chon\right)\)
Vậy x=-1
Câu b tương tự
Bài 1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
\(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
\(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
\(b,2^{21}\) và \(3^{14}\)
\(2^{21}=\left(2^3\right)^7\)
\(3^{14}=\left(3^2\right)^7\)
\(2^3< 3^2\)\(\Rightarrow2^{21}< 3^{14}\)
\(c,12^8\) và \(8^{12}\)
\(12^8=\left(12^2\right)^4=144^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
\(144^4< 512^4\)\(\Rightarrow12^8< 8^{12}\)
\(d,\left(-5\right)^{39}\) và \(\left(-2\right)^{91}\)
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}\)
\(\left(-5\right)^3>\left(-2\right)^7\)\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Bài 2:
\(a,2.\left|x-1\right|-3x=7\)
\(\left|x-1\right|=\dfrac{7+3x}{2}\)
Ta có 2 trường hợp:
Th1:\(x-1=\dfrac{7-3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{7+3x}{2}\)
\(\Rightarrow2x-2=7+3x\)
\(2x-3x=7+2\)
\(-x=9\Rightarrow x=-9\)
Th2:\(x+1=-\dfrac{7+3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{-7-3x}{2}\)
\(\Rightarrow2x-2=-7-3x\)
\(2x+3x=-7+2\)
\(5x=-5\Rightarrow x=-1\)
Vậy \(x\in\left\{-9;-1\right\}\)
\(b,\left|5x-3\right|=\left|7-x\right|\)
Ta có: Th1: \(\left|7-x\right|=7-x\) khi \(7-x\ge0\)\(\Rightarrow x\le7\)
\(5x-3=7-x\)
\(5x+x=7+3\)
\(6x=10\Rightarrow x=\dfrac{10}{6}=\dfrac{5}{3}\)( thoả mãn )
vì x thoả mãn \(x\le7\)\(\Rightarrow\) th1 thoả mãn x
Ta có: Th2: \(\left|7-x\right|=-\left(7-x\right)\) khi \(7-x< 0\Rightarrow x>7\)
\(5x-3=-\left(7-x\right)\)
\(5x-3=-7+x\)
\(5x-x=-7+3\)
\(4x=-4\Rightarrow x=-1\) ( loại )
Vì x thoả mãn \(x>7\) mà \(x=-1\Rightarrow\)th2 loại
Ta có :
\((21^{30}+39^{21})=(21^2)^{15}+(39^2)^{10}\cdot39\)
\(\Rightarrow(9\cdot45+36)^{15}+(33\cdot45+36)^{20}\cdot39\)
\(\Rightarrow BS45+36^{15}+BS45+36^{20}\cdot39\)
\(\Rightarrow BS45+36^{15}(36^5+19)\)
Mà \(36^{15}+19⋮45\)
\(BS45+36^{15}+(36^5+19)=BS45+36^{15}\cdot45a=BS45⋮45(đpcm)\)
Mình vẫn chưa hiểu cách giải, bạn giải rõ lại dùm mình được ko? mình cảm ơn trước