K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Qua đây tham khảo nè bạn: https://loigiaihay.com/bai-75-trang-40-sgk-toan-9-tap-1-c44a26987.html

1 tháng 7 2019

\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)

\(=[1+\frac{\sqrt{a}.\left(\sqrt{a}+1\right)}{\sqrt{a+1}}].[1-\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}]\)

\(=\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)\)

\(=1-a\)

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

13 tháng 11 2021

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

13 tháng 11 2021

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

17 tháng 2 2019

\(VT=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}.\left(\dfrac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)^2\)

\(=\left(1+\sqrt{x}+x\right).\left(\dfrac{1}{1+\sqrt{x}}\right)^2\)

\(=\left(1+\sqrt{x}+x\right).\dfrac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\dfrac{1+\sqrt{x}+x}{\left(1+\sqrt{x}\right)^2}=\dfrac{\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=1=VP\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Câu 1: 

a: \(Q=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b: Để Q>0 thì \(\sqrt{a}-2>0\)

=>a>4

AH
Akai Haruma
Giáo viên
20 tháng 8 2023

Lời giải:

A có min thôi bạn nhé.

\(A=\frac{\sqrt{x}+1+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}: \frac{\sqrt{x}-(\sqrt{x}-1)}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{1}{\sqrt{x}-1}=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\frac{2(\sqrt{x}+1)-1}{\sqrt{x}+1}=2-\frac{1}{\sqrt{x}+1}\)

Vì $\sqrt{x}\geq 0$ với mọi $x\geq 0; x\neq 1$ nên $\sqrt{x}+1\geq 1$

$\Rightarrow \frac{1}{\sqrt{x}+1}\leq 1$
$\Rightarrow A=2-\frac{1}{\sqrt{x}+1}\geq 2-1=1$

Vậy $A_{\min}=1$ tại $x=0$

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9