Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)
Mà a , a-1 là 2 số nguyên liên tiếp
\(\Rightarrow a\left ( a-1 \right )\vdots 2\)
Theo chứng minh trên
\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)
\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)
\(\Rightarrow a+b+c+d+e\vdots 2\)
MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)
\(\Rightarrow a+b+c+d+e\) là hợp số.

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi

\(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{2013}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{23}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{\frac{1990}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{12}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{\frac{23}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{11}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{\frac{12}{11}}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{1+\frac{1}{11}}}}\)
Vậy a = 1; b = 86; c = 1; d = 1; e = 11
Vậy a + b + c + d + e = 1 + 86 + 1 + 1 + 11 = 100

Thay \(a+b+c\) vào \(A\) ta được:
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)
\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
Ta có:
\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế ta được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(1\right)\)
Lại có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế ta lại được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)
Vậy \(A\) không phải là số nguyên (Đpcm)
cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui
Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\)
suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)
=> A > 1
*Trả lời:
- Ta có \(a b = c d\). Xét biểu thức \(a + b + c + d\). Ta cần chứng minh \(a + b + c + d\) là hợp số.- Giả sử \(a = x z\) và \(c = x y\) với \(x , y , z , t\) là các số nguyên dương. Vì \(a b = c d\) nên \(x z \cdot b = x y \cdot d\), suy ra \(b z = y d\), hay \(b = y t\) và \(d = z t\) với \(t\) là số nguyên dương.
- Khi đó, \(a + b + c + d = x z + y t + x y + z t\) \(= x \left(\right. z + y \left.\right) + t \left(\right. y + z \left.\right)\) \(= \left(\right. x + t \left.\right) \left(\right. y + z \left.\right)\)
- Vì \(a , b , c , d\) là các số nguyên dương nên \(x , y , z , t\) cũng là các số nguyên dương. Do đó, \(x + t > 1\) và \(y + z > 1\). Vậy \(a + b + c + d\) là tích của hai số lớn hơn 1, suy ra \(a + b + c + d\) là hợp số.