Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2020\equiv1\left(mod3\right)\)\(\Rightarrow2020^{2020}\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2020}+1\equiv2\left(mod3\right)\)
Lại có:
\(n^3+2018n=n\left(n^2+2018\right)\)
\(+\)Nếu n chia hết cho 3 thì \(n\left(n^2+2018\right)⋮3\)
+) Nếu \(n⋮̸3\)thì \(n^2+2018⋮3\)
Do đó n(n^2+2018) luôn chia hết cho 3
Vậy....
\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)
Ta có :
\(x\left(x+1\right)=n\left(n+2\right)\)
\(\Leftrightarrow x^2+x=n^2+2n\)
\(\Leftrightarrow x^2+x+1=n^2+2n+1\)
\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)
Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương
\(x>0\), Ta có : \(x^2+x+1>x^2\)
\(x^2+x+1< x^2+x+1+x=x^2+2x+1\)
\(=\left(x+1\right)^2\)
\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)
=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp
Vậy không thể tồn tại số nguyên dương x
Giả sử tồn tại số nguyên n thoả mãn \(\left(2014^{2014}+1\right)\) chia hết cho \(n^3+2012n\)
Ta có: \(n^3+2012n=\left(n^3-n\right)+2013n=n\left(n-1\right)\left(n+1\right)+2013n\)
Vì: \(n-1,n,n+1\) là ba số nguyên liên tiếp nên có 1 số chia hết cho 3
Suy ra \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 3, mà 2013 chia hết cho 3 nên \(\left(n^3+2012n\right)\) chia hết cho 3 (1)
Mặt khác: \(2014^{2014}+1=\left(2013+1\right)^{2014}+1\) chia 3 dư 2 ( vì 2013 chia hết cho 3) (2)
Từ (1) và (2) dẫn đến điều giả sử trên là vô lý, tức là không có số nguyên n nào thoả mãn đề bài toán đã cho
d.violet.vn//uploads/resources/present/3/652/138/preview.swf
Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.
đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1
Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.
suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020
mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)
xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1
hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1. Suy ra vô lý.
Vậy P(x) không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.
Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+....+\frac{1}{2020}\right)\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{2019}-\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1010}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
=> k = 1
=> k là số tự nhiên (đpcm)
Xét \(a,b>1\)
\(\Rightarrow a^{2020}+b^{2020}>a^{2018}+b^{2018}\)(loại)
Xét \(0< a,b< 1\)
\(\Rightarrow a^{2020}+b^{2020}< a^{2018}+b^{2018}\)
Xét \(a=1\Rightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}}\)
Xét \(a=0\Rightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}}\)
\(\Rightarrow\left(a,b\right)=\left(0,0;0,1;1,0;1,1\right)\)
Thế từng bộ vô cái nào lớn nhất lụm
Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)
Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)
Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2
\(\Rightarrow\) vô lí
Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán