K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Gọi \(a_1\)là số bình phương lên bằng 3

Gọi \(a_2\)là số bình phương lên bằng 5

Ta có \(a_1^2=3\)và    \(a_2^2=5\)

Ta có \(a_1=\sqrt{3}\)và \(a_2=\sqrt{5}\)

Mà \(\sqrt{3}\)và \(\sqrt{5}\)là số vô tỉ 

Nên \(a_1;a_2\notin Z\)

27 tháng 6 2015

Ta có:12=22.3

=>Số có bình phương bằng 12 là 2.\(\sqrt{3}\)

Do \(\sqrt{3}\) không phải số hữu tỉ nên =>2.\(\sqrt{3}\)không phải số hữu tỉ

=>không có số hữu tỉ nào có bình phương bằng 12

Gia su co so huu ti co binh phuong = 7

Tức a^2=7 ( a = m/n với m,n ngto cùng nhau hay hiểu là ko chia hết cho số nao dc nx)

<=> m^2/n^2=7=> m^2=7n^2 =>m^2 chia hết cho 7 => m chia hết cho 7 => m=7k( k thuộc Z)

=> 49k^2=7n^2<=>7k^2=n^2 => n^2 chia hết cho 7 => n chia hết cho 7 => n = 7t(t thuộc Z)

=> a=m/n = 7k/7t=k/t (vô lí) => ko tồn tại.

23 tháng 8 2016

Ta sẽ chứng minh bằng phương pháp phản chứng .

Giả sử có tồn tại một số hữu tỉ \(\frac{x}{y}\left(x;y\in Z;\left(x;y\right)=1\right)\) sao cho \(\frac{x}{y}=\sqrt{2}\)

\(\Rightarrow\frac{x^2}{y^2}=2\)

\(\Rightarrow\frac{x^2}{2}=y^2\)

Mà y là số nguyen => y^2 là số nguyên

\(\Rightarrow x^2⋮2\) 

\(\Rightarrow x^2⋮4\)

Mặt khác \(x^2=2y^2\)

=> \(2y^2⋮4\)

\(\Rightarrow y^2⋮4\)

=> \(ƯC_{\left(x;y\right)}=4\)

Trái với giả thiết

=> Không tồn tại số hữu tỉ nào mà bình phương lên bằng 2

23 tháng 8 2016

Thực sự cảm ơn rất nhìu !

20 tháng 7 2017

 giả sử tồn tại số hữu tỉ có bình phương bằng 2 

coi số đó là a/b ( a;b thuộc N*,(a;b)= 1)

ta có (a/b)^2 = 2 => a^2 = 2 b^2 => a^2 chia hết cho 2 => a^2 chia hết cho 4 => b^2 chia hết cho 2 => b chia hết cho 2 => UC(a;b)={1;2}

=> trái vs giả sử => ko tồn tại hữu tỉ có bình phương bằng 2 

CM tương tự vs 3 và 6 nhé

23 tháng 5 2018

Gọi a là số bình phương lên bằng 2

Gọi b là số bình phương lên bằng 3

Ta có : \(a^2=2\)và \(b^2=3\)

\(\Rightarrow a=\sqrt{2}\)và \(b=\sqrt{3}\)

Mà \(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ

Nên \(a;b\notin Z\)

Vậy không có số hữu tỉ nào bình phương bằng 2 và 3 

_Chúc bạn học tốt_

23 tháng 5 2018

vào câu hỏi tương tự bạn nhé

27 tháng 6 2015

Giả sử số hữu tỉ có dạng \(\frac{a}{b}\) (a, b thuộc Z, dạng tối giản)
Bình phương của nó là: \(\frac{a^2}{b^2}=k\) (k là 1 số nguyên dương)

\(\Rightarrow a^2=kb^2\)

+Nếu k là một số chính phương (=m2) thì khai căn của nó là một số nguyên (thỏa đề bài)

+Nếu k không phải là một số chính phương, thì \(\sqrt{k}\) là một số vô tỉ.

\(\Rightarrow a^2=\left(\sqrt{k}.b\right)^2\Rightarrow a=\sqrt{k}.b\) hoặc \(a=-\sqrt{k}.b\)

Mà a, b là 2 số nguyên => \(\sqrt{k}\) là một số nguyên (vô lí, vì \(\sqrt{k}\) là số vô tỉ)

\(\Rightarrow\) k buộc phải là một số chính phương
Bình phương của 1 số là số chính phương, do đó nó là một số nguyên!


 

 a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm 

4 tháng 8 2016

vk oi ck ne ket ban nhe

26 tháng 8 2016

đề sai nhé, có số hữu tỉ bình phương = 2 mà

26 tháng 8 2016

Giả sử tồn tại số hữu tỉ có bình phương bằng 2, là \(\frac{m}{n}\)( ƯCLN(m;n) = 1 )

\(\Rightarrow\frac{m^2}{n^2}=2\)

\(\Rightarrow m^2=2n^2\)

Mà ƯCLN(m;n)=1 nên \(m^2\)chia hết cho 2

\(\Rightarrow m\)chia hết cho 2 ( vì 2 là số nguyên tố )

Đặt \(m=2k\)

\(\Rightarrow4k^2=2n^2\)

\(\Rightarrow n^2=2k^2\)

Tương tự, n phải chia hết cho 2

DO đó ƯCLN(m;n) = 2, trái với điều kiện.

Vậy ...