Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1 vào pt ta được pt ẩn m: 1-2(m-1).1+m=0
<=> 1 - 2m + 2 + m = 0
<=> m=3
Thay m=3 vào pt đầu và được: x2 - 4x + 3 = 0
<=> x2 - x - 3x + 3 =0
<=> x(x-1) - 3(x-1)=0
<=> (x-3) (x-1)=0
<=> x-3=0 hoặc x-1=0
<=> x=3 hoặc x=1
Vậy: Khi x=1 thì m=3, nghiệm còn lại của pt là x=3
Cho phương trình \(ax^2+bx+c=0\left(a< >0\right)\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(-\dfrac{b}{a}\right)^2-\dfrac{4c}{a}\)
\(x_1x_2=\dfrac{c}{a};x_1+x_2=-\dfrac{b}{a}\)
Bài 5:
\(x^2+2mx+2m-6=0\)
\(\text{Δ}=\left(2m\right)^2-4\left(2m-6\right)\)
\(=4m^2-8m+24\)
\(=4m^2-8m+4+20\)
\(=\left(2m-2\right)^2+20>=20>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2m}{1}=-2m\\x_1x_2=\dfrac{c}{a}=\dfrac{2m-6}{1}=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=2x_1x_2+20\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2=20\)
=>\(\left(-2m\right)^2-4\left(2m-6\right)=20\)
=>\(4m^2-8m+24-20=0\)
=>\(4m^2-8m+4=0\)
=>\(\left(2m-2\right)^2=0\)
=>2m-2=0
=>2m=2
=>m=1(nhận)
Câu 4:
a: \(2x^2-2x-m=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot2\cdot\left(-m\right)\)
\(=4+8m\)
Để phương trình có hai nghiệm phân biệt thì 8m+4>0
=>8m>-4
=>\(m>-\dfrac{1}{2}\)
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{2}=\dfrac{2}{2}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m}{2}\end{matrix}\right.\)
\(\left(1-x_1x_2\right)^2+4\cdot\left(x_1^2+x_2^2\right)=16\)
=>\(\left(1+\dfrac{m}{2}\right)^2+4\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=16\)
=>\(\left(\dfrac{m+2}{2}\right)^2+4\left[1^2-2\cdot\dfrac{-m}{2}\right]=16\)
=>\(\dfrac{1}{4}\left(m^2+4m+4\right)+4\left(1+m\right)=16\)
=>\(\dfrac{1}{4}m^2+m+1+4+4m-16=0\)
=>\(\dfrac{1}{4}m^2+5m-11=0\)
=>\(m^2+20m-44=0\)
=>(m+22)(m-2)=0
=>\(\left[{}\begin{matrix}m+22=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-22\left(loại\right)\\m=2\left(nhận\right)\end{matrix}\right.\)
5.
\(\Delta'=1+2m\)
a.
Phương trình có 2 nghiệm pb khi:
\(1+2m>0\Rightarrow m>-\dfrac{1}{2}\)
b.
Khi pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(\left(1-x_1x_2\right)^2+4\left(x_1^2+x_2^2\right)=16\)
\(\Leftrightarrow\left(1-x_1x_2\right)^2+4\left(x_1+x_2\right)^2-8x_1x_2=16\)
\(\Leftrightarrow\left(1+\dfrac{m}{2}\right)^2+4.1^2+4m=16\)
\(\Leftrightarrow\dfrac{m^2}{4}+5m-11=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-22< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
5.
\(\Delta'=m^2-\left(2m-6\right)=\left(m-1\right)^2+5>0;\forall m\)
Pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=2x_1x_2+20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=4x_1x_2+20\)
\(\Leftrightarrow4m^2=4\left(2m-6\right)+20\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
Nếu chứng minh $\sqrt{x}+\sqrt{x+1}=1$ thì không có đủ cơ sở để cm bạn nhé. Bạn viết lại đề hoặc bổ sung thêm điều kiện để mọi người trợ giúp tốt hơn.
\(\Delta=b^{^2}-4ac=m^{^2}-4\left(3-m\right)=m^{^2}-12+4m=\left(m+2\right)^{^2}-16\)
Phương trình có hai nghiệm phân biệt khi và chỉ khi:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-16>0\Leftrightarrow m+2>16\Leftrightarrow m>14\\ Viete:\\ x_1+x_2=-\dfrac{b}{a}=m\\ x_1x_2=\dfrac{c}{a}=3-m\)
x1 là nghiệm phương trình nên:
\(x_1^2=mx_1+m-3=m\left(x_1+1\right)-3\\ \Rightarrow\left[m\left(x_1+1\right)-3+3\right]\left(x_2+1\right)=12\\ m\left(x_1+1\right)\left(x_2+1\right)=12\\ m\left(x_1x_2+x_1+x_2+1\right)=12\\ m\left(3-m+m+1\right)=12\\ 4m=12\\ m=3\left(KTM\right)\)
Vậy không tồn tại m thoả đề bài
x2 + 7x + 12 = 0
Có a = 1; b = 7; c = 12
⇒ Δ = b2 – 4ac = 72 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.
x2 – 7x + 12 = 0
Có a = 1; b = -7; c = 12
⇒ Δ = b2 – 4ac = (-7)2 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.
bạn có thể nói rỏ hơn không
Dễ mà bạn . Hệ thức Vi-et : cho pt bậc 2 : ax2 + bx + c = 0 (a khác 0) có 2 nghiệm x1 ; x2 thì
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Ta có: \(\Delta=b^2-4ac\)
Pt có 2 nghiệm \(x_1=\frac{-b-\sqrt{\Delta}}{2a}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}\)
Khi đó: \(x_1+x_2=\frac{-b-\sqrt{\Delta}-b+\sqrt{\Delta}}{2a}=\frac{-2b}{2a}=-\frac{b}{a}\)
\(x_1x_2=\frac{\left(-b-\sqrt{\Delta}\right)\left(-b+\sqrt{\Delta}\right)}{4a^2}=\frac{b^2-\Delta}{4a^2}\)
\(=\frac{b^2-b^2+4ac}{4a^2}=\frac{4ac}{4a^2}=\frac{c}{a}\)
Vậy.............