Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có HB và HC là hai hình chiếu của AB và AC(1)
. Mà tam giác ABC cân tại A => AB=AC(2)
Từ (1) và (2) => HB=HC
tròn 1 điểm:33333 chế lại làm theo định lý pytago
ta có BH^2=AB^2-AH^2( áp dụng định lý pytago)
HC^2=AC^2-AH^2( áp dụng định lý pytago)
vì AB>AC=> AB^2>AC^2=> AB^2-AH^2>AC^2-AH^2=> BH^2>HC^2 => BH>CH (BH,CH>0)
làm thêm thui chứ cách của bạn ngắn hơn và đúng:33333
xét 2 tam giác vuông ABH và ACH có
AH:cạnh chung
AB=AC(\(\Delta ABC\) cân tại A)
do đó \(\Delta ABH=\Delta ACH\)(cạnh huyền-góc nhọn)
suy ra HB=HC(2 cạnh tương ứng)
* Vẽ hình hộ mình nha !!!
a) Xét tam giác ABH và tam giác ACH vuông tại H có:
+) AB = AC (chứng minh trên)
+) Góc B = góc C (cmt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=> HB = HC (2 cạnh tương ứng)
b) Vì tam giác ABH = tam giác ACH nên:
=> Góc BAH = góc CAH (2 góc tương ứng)
tham khảo
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng
Xét 2 tam giác vuông ABH và ACH,có: AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH =>HB=HC
Xét hai tam giác vuông ΔABH và ΔACH đều vuông tại H có:
AB = AC (gt)
AH cạnh chung
Nên ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)
Suy ra HB = HC
hình bạn tự vẽ
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng)
b/ Vì tam giác vuông BAH=tam giác vuông ACH(cmt) =>\(\widehat{BAH}\)=\(\widehat{CAH}\)(t/ứng)
Xét ΔABC có
HB,HC lần lượt là hình chiếu của AB,AC trên BC
AB=AC
Do đó: HB=HC