Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: Chứng minh các hằng đẳng thức sau
a. x2+y2=(x+ y)2- 2xy
biến đổi vế phải ta được:
(x+ y)2- 2xy
=x2+2xy+y2-2xy
=x2+y2 bằng vế phải
=> biểu thức đã được chứng minh
b. (a+b)2-(a-b)(a+b)= 2b(a+b)
biến đổi vế trái ta được:
(a+b)2-(a-b)(a+b)
=a2+2ab+b2-(a2-b2)
=a2+2ab+b2-a2+b2
=2ab+2b2
=2b(a+b)
x4 + y4 +(x+y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 +4xy3 + y4 = 2x4 +2y4 +4x2y2+4x3y+4xy3+2x2y2
= 2(x4 +y4 +2x2y2)+4xy(x2+y2) + 2x2y2= 2(x2 + y2)2 + 4xy(x2 + y2) +2x2y2
=2((x2 +y2) +2xy(x2+ y2) +x2y2) = 2(x2 + y2 + xy)2 \(\Rightarrow\) đpcm
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)
\(=2xy+2yz+2zx\)
\(=2\left(xy+yz+zx\right)\)
\(=VP\)
Vậy...
1, \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)
Biến đổi VT :\(\left(xy+z\right)^2-x^2y^2\)
\(=x^2y^2+2xyz+z^2-x^2y^2\)
\(=2xyz+z^2\)
\(=z\left(2xy+z\right)\) = VP
Vậy \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)
2, \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)
Biến đổi VT: \(\left(x^2+y^2\right)^2-4x^2y^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4-2x^2y^2+y^4\)
Biến đổi VP: \(\left(x+y\right)^2\left(x-y\right)^2\)
\(=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)\(=x^4-2x^2y^2+y^4\)
Ta có VT = VP
Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)
1 ) \(VT=\left(xy+z\right)^2-x^2y^2\)
\(=x^2y^2+2xyz+z^2-x^2y^2\)
\(=2xyz+z^2\)
\(=z\left(2xy+z\right)=VP\left(đpcm\right)\)
2 ) \(VT=\left(x^2+y^2\right)^2-4x^2y^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4+y^4-2x^2y^2\)
\(=\left(x^2-y^2\right)^2\)
\(=\left[\left(x-y\right)\left(x+y\right)\right]^2\)
\(=\left(x-y\right)^2\left(x+y\right)^2=VP\left(đpcm\right)\)
Xin lỗi mk viết nhầm
(x+y+z)2-x2-y2-z2 =x2+y2+z2+2(xy+yz+xz)-x2-y2-z2
(x+y+z)2-x2-y2-z2
=x2+y2+2(xy+yz+xz)-x2-y2-z2
= 2(xy+yz+xz)
Vậy hằng đẳng thức được chứng minh
Biến đổi vế phải:
VP= (x+y)2 -2xy = x2+2xy+y2-2xy=x2+y2=VT
=> đpcm
=.= hok tốt!!
Ta có:
\(x^2+y^2\)
\(=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy\)
Hok tốt nhé