K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

\(\Rightarrow\left(\sqrt{a+\sqrt{b}}\mp\sqrt{a-\sqrt{b}}\right)^2=\left(\sqrt{2\left(a\mp\sqrt{a^2-b}\right)}\right)^2\Leftrightarrow a+\sqrt{b}+a-\sqrt{b}\mp2\sqrt{\left(a+\sqrt{b}\right)\cdot\left(a-\sqrt{b}\right)}=2a\mp2\sqrt{a^2-b}\Leftrightarrow2a\mp2\sqrt{a^2-b}=2a\mp2\sqrt{a^2-b}\) (luôn đúng) \(\Rightarrowđpcm\)

4 tháng 7 2023

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

4 tháng 7 2023

loading...  

2 tháng 7 2021

a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

 

a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

=2

 

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

21 tháng 9 2017

a) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)

=\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

=\(\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

=\(\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

=\(\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)(đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Đặt \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\). Bài toán trở thành
Cho $x,y,z$ dương thỏa mãn \(y^2\neq z^2; x+y\neq z; x^2+y^2=(x+y-z)^2\)

CMR: \(\frac{x^2+(x-z)^2}{y^2+(y-z)^2}=\frac{x-z}{y-z}\)

--------------------------------------------------

Ta có:

\(x^2+y^2=(x+y-z)^2=[y+(x-z)]^2\)

\(\Leftrightarrow x^2+y^2=y^2+(x-z)^2+2y(x-z)\)

\(\Leftrightarrow x^2=(x-z)^2+2y(x-z)\)

\(\Leftrightarrow x^2+(x-z)^2=2(x-z)^2+2y(x-z)=2(x-z)(x-z+y)\)

Tương tự:

\(y^2+(y-z)^2=2(y-z)^2+2x(y-z)=2(y-z)(y-z+x)\)

Do đó: \(\frac{x^2+(x-z)^2}{y^2+(y-z)^2}=\frac{2(x-z)(x-z+y)}{2(y-z)(y-z+x)}=\frac{x-z}{y-z}\)

Ta có đpcm.