Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x-\frac{a+b}{2}=X\)
\(\Rightarrow y=\left(X-\frac{a-b}{2}\right)^{1994}+\left(X+\frac{a-b}{2}\right)^{1994}\)
\(y\left(-X\right)=\left(-X-\frac{a-b}{2}\right)^{1994}+\left(-X+\frac{a-b}{2}\right)^{1994}\)
\(=\left(X+\frac{a-b}{2}\right)^{1994}+\left(X-\frac{a-b}{2}\right)^{1994}=y\left(X\right)\)
\(\Rightarrow y\left(X\right)\) là hàm chẵn \(\Rightarrow\) đồ thị hàm số đối xứng qua trục \(X=0\) hay đồ thị hàm \(y\left(x\right)\) đối xứng qua trục \(x-\frac{a+b}{2}=0\Leftrightarrow x=\frac{a+b}{2}\)
a) Ta có \(\left(C\right):y=\frac{-x+2}{x+1}=-1+\frac{3}{x+1}\)
Dời hệ trục Oxy về hệ trục XIY với công thức dời trục \(\begin{cases}x=X-1\\y=Y-1\end{cases}\)
Ta có phương trình hệ trục tọa độ mới \(Y=\frac{3}{X}\),
Trong hệ trục tọa độ mới, ta giả sử \(M\left(m;\frac{3}{m}\right);N\left(n;\frac{3}{n}\right);P\left(p;\frac{3}{p}\right)\)
Gọi \(H\left(x;y\right)\) là trực tâm của tam giác MNP, ta có : \(\begin{cases}\overrightarrow{MH}.\overrightarrow{NP}=0\\\overrightarrow{NH}.\overrightarrow{MP}=0\end{cases}\) (a)
Mà \(\overrightarrow{MH}=\left(x-m;y-\frac{3}{m}\right);\overrightarrow{NP}=\left(p-n;\frac{3}{p}-\frac{3}{n}\right);\overrightarrow{NH}=\left(x-n;y-\frac{3}{n}\right);\overrightarrow{MP}=\left(p-m;\frac{3}{p}-\frac{3}{m}\right)\)
Nên (a) \(\Leftrightarrow\begin{cases}x-m-\frac{3}{np}\left(y-\frac{3}{m}\right)=0\\x-n-\frac{3}{mp}\left(y-\frac{3}{n}\right)=0\end{cases}\) \(\Leftrightarrow\begin{cases}x-\frac{3}{np}y-m+\frac{9}{mnp}=0\\x-\frac{3}{mp}y-n+\frac{9}{mnp}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=-\frac{9}{mnp}\\y=-\frac{mnp}{3}\end{cases}\)
Suy ra \(H\left(-\frac{9}{mnp};-\frac{mnp}{3}\right)\)
Vì \(y_H=\frac{3}{x_H}\) nên \(H\in\left(C\right)\)\(\Rightarrow\) điều phải chứng minh
b) \(B\left(b;\frac{2m-b}{b+m}\right)\in\left(C_m\right)\Rightarrow\overrightarrow{AB}=\left(b;\frac{m-2b}{m+b}\right)\)
Ta có : \(I\left(-m;-1\right)\Rightarrow\overrightarrow{AI}=\left(-m;-2\right)\)
Tam giác ABI vuông cân tại A \(\Leftrightarrow\begin{cases}\overrightarrow{AB.}\overrightarrow{AI}=0\\AB^2=AI^2\end{cases}\)
\(\begin{cases}mb+2\frac{m-2b}{m+b}=0\\m^2+4=b^2+\left(\frac{m-2b}{m+b}\right)^2\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{m-2b}{m+b}=-\frac{bm}{2}\left(1\right)\\m^2+4=b^2+\frac{m^2b^2}{4}\left(2\right)\end{cases}\)
\(\left(2\right)\Leftrightarrow m^2\left(b^2-4\right)+4\left(b^2-4\right)=0\Leftrightarrow\left(b^2-4\right)\left(m^2+4\right)=0\)
\(\Leftrightarrow b^2=4\Leftrightarrow b=\pm2\)
* b = 2 thay vào (1) ta được \(\frac{m-4}{m+2}=-m\Leftrightarrow m^2+3m-4=0\Leftrightarrow m=1;m=-4\)
* b = - 2 thay vào (1) ta được \(\frac{m+4}{m-2}=m\Leftrightarrow m^2-3m-4=0\Leftrightarrow m=-1;m=4\)
Vậy \(m=\pm1;m=\pm4\) là những giá trị cần tìm
Phương trình hoành độ giao điểm của đồ thị với trục hoành là :
\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)
Biến đổi tương đương phương trình này :
\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)
Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :
\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)
Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)
\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)
a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)
Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu
\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)
Vậy \(0< m< 3\) là giá trị cần tìm
b) Khi m = 1 ta có : \(y=x^3-2x\).
Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)
Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)
Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)
Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)
\(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)
\(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\) \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)
Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)
a) Ta có tập xác định của cả hai hàm số \(f\left(x\right),g\left(x\right)\) đểu là \(\mathbb{R}\)
Mặt khác:
\(f\left(-x\right)=\dfrac{a^{-x}+a^{-x}}{2}=f\left(x\right);g\left(x\right)=\dfrac{a^{-x}-a^x}{2}=-g\left(x\right)\)
Vậy \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) làm hàm số lẻ
b) Ta có :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2}\ge\sqrt{a^xa^{-x}}=1,\forall x\in\mathbb{R}\)
và :
\(f\left(0\right)=\dfrac{a^0+a^0}{2}=1\)
Vậy :
\(minf\left(x\right)=f\left(0\right)=1\)
Phương trình hoành độ giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) được viết thành :
\(\left(x+1\right)\left(x^2-3mx+2m^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-m\right)\left(x-2m\right)=0\)
\(\Rightarrow\) Giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) gồm \(A\left(-1;-m-m^2\right);B\left(m;0\right)\) và \(C\left(2m;m^2\right)\), trong số đó, A là điểm duy nhất có hoành độ không đổi (khi m thay đổi)
Đặt \(f_m\left(x\right)=x^3-\left(3m-1\right)x^2+2m\left(m-1\right)x+m^2\)
Các tiếp tuyến của \(\left(C_m\right)\) tại B và C lần lượt là các đường thẳng :
\(\left(\Delta_B\right):y=f_m'\left(x_B\right)x+y_b-f_m'\left(x_B\right)x_B\)
\(\left(\Delta_C\right):y=f_m'\left(x_C\right)x+y_C-f_m'\left(x_C\right)x_C\)
Ta cần tìm m để B và C cùng khác A và \(\Delta_B\backslash\backslash\Delta_C\), tức là :
\(\begin{cases}x_B\ne x_A\\x_C\ne x_A\\f'_m\left(x_B\right)=f'_m\left(x_C\right)\\y_B-f'_m\left(x_B\right)x_B\ne y_C-f'_m\left(x_C\right)x_C\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-1\\m\ne-\frac{1}{2}\\-m^2=2m^2+2m\\m^3\ne-4m^3-3m^2\end{cases}\)
\(\Leftrightarrow m=-\frac{2}{3}\)
Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)
Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)
(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt
Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)
Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \) là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)
\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :
\(x_2-x_1=x_3-x_2=x_4-x_3\)
\(\Leftrightarrow t_2=9t_1\left(a\right)\)
Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)
Từ (a) và (b) ta có : \(9m^2-14m-39=0\)
Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)
Ta có : \(f'\left(x\right)=\left(3^x\ln3\right)\left(x-\sqrt{x^2+1}\right)+3^x\left(1-\frac{x}{\sqrt{x^2+1}}\right)=3^x\left(x-\sqrt{x^2+1}\right)\left(\ln3-\frac{1}{\sqrt{x^2+1}}\right)\)
Mà : \(\begin{cases}\sqrt{x^2+1}>\sqrt{x^2}=\left|x\right|\ge x\Rightarrow x-\sqrt{x^2+1}< 0\\\ln3>1>\frac{1}{\sqrt{x^2+1}}\Rightarrow\ln3-\frac{1}{\sqrt{x^2+1}}>0\end{cases}\)
\(\Rightarrow f'\left(x\right)< 0\) với mọi x thuộc R
Vậy hàm số \(y=f\left(x\right)=3^x\left(x-\sqrt{x^2+1}\right)\) nghịch biến trên R
a) Xét phương trình : \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)
Ta có : \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos2a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2\), \(a\ge0\) với mọi a
Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lí)
Vậy \(\Delta'>0\)
với mọi a \(\Rightarrow f'\left(x\right)=0\)
có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số có cực đại, cực tiểu
b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a\)
\(x_1x_2=-4\left(1+\cos2a\right)\)
\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)=9+8\cos^2a-6\sin a\cos a\)
\(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2=18-\left(3\sin a+\cos2a\right)\le18\)
Đặt \(X=x-\frac{a+b}{2}\)
\(\Rightarrow y=\left(X-\frac{a-b}{2}\right)^{1995}+\left(X+\frac{a-b}{2}\right)^{1995}\)
\(y\left(-X\right)=\left(-X-\frac{a-b}{2}\right)^{1995}+\left(-X+\frac{a-b}{2}\right)^{1995}\)
\(=-\left[\left(X+\frac{a-b}{2}\right)^{1995}+\left(X-\frac{a-b}{2}\right)^{1995}\right]=-y\left(X\right)\)
\(\Rightarrow y\left(X\right)\) là hàm lẻ \(\Rightarrow y\left(X\right)\) nhận gốc tọa độ là tâm đối xứng
\(\Rightarrow y\left(x\right)\) nhận \(A\left(\frac{a+b}{2};0\right)\) là 1 tâm đối xứng
\(\Rightarrow y\left(x\right)\) có tâm đối xứng nằm trên trục hoành
Bạn rất lợi hại. Mình cảm ơn nhiều.