K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hàm số \(y = \tan x\)a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).      \(x\)     \( - \frac{\pi }{3}\)     \( - \frac{\pi }{4}\)      \( - \frac{\pi }{6}\)0\(\frac{\pi }{6}\)\(\frac{\pi }{4}\)\(\frac{\pi }{3}\)\(y = \tan x\)???????Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và...
Đọc tiếp

Cho hàm số \(y = \tan x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

      \(x\)

     \( - \frac{\pi }{3}\)

     \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(y = \tan x\)

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = \pi \), ta được đồ thị của hàm số \(y = \tan x\) như hình dưới đây.

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số \(y = \tan x\).

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) =  - \tan x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \tan x\) là hàm số lẻ.

b)

    \(x\)

     \( - \frac{\pi }{3}\)

      \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

     \(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

  \(\tan x\)

\( - \sqrt 3 \)

   \( - 1\)

      \( - \frac{{\sqrt 3 }}{3}\)

     \(0\)

\(\frac{{\sqrt 3 }}{3}\)

      \(1\)

\(\sqrt 3 \)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).

NV
11 tháng 8 2020

2.

a. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

Miền xác định đối xứng

\(f\left(-x\right)=\frac{-x+tan\left(-x\right)}{\left(-x\right)^2+1}=\frac{-x-tanx}{x^2+1}=-\frac{x+tanx}{x^2+1}=-f\left(x\right)\)

Hàm lẻ

b. \(f\left(-x\right)=\frac{5\left(-x\right).cos\left(-5x\right)}{sin^2\left(-x\right)+2}=\frac{-5x.cos5x}{sin^2x+2}=-f\left(x\right)\)

Hàm lẻ

c. \(f\left(-x\right)=\left(-2x-3\right)sin\left(-4x\right)=\left(2x+3\right)sin4x\)

Hàm không chẵn không lẻ

d. \(f\left(-x\right)=sin^4\left(-2x\right)+cos^4\left(-2x-\frac{\pi}{6}\right)\)

\(=sin^42x+cos^4\left(2x+\frac{\pi}{6}\right)\)

Hàm ko chẵn ko lẻ

NV
11 tháng 8 2020

1. ĐKXĐ:

a.

\(cos\left(x-\frac{\pi}{4}\right)\ne0\)

\(\Leftrightarrow x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x\ne\frac{3\pi}{4}+k\pi\)

b.

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

c.

Hàm xác định trên R

d.

\(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,y'=\left(tanx\right)'=\left(\dfrac{sinx}{cosx}\right)'\\ =\dfrac{\left(sinx\right)'cosx-sinx\left(cosx\right)'}{cos^2x}\\ =\dfrac{cos^2x+sin^2x}{cos^2x}\\ =\dfrac{1}{cos^2x}\\ b,\left(cotx\right)'=\left[tan\left(\dfrac{\pi}{2}-x\right)\right]'\\ =-\dfrac{1}{cos^2\left(\dfrac{\pi}{2}-x\right)}\\ =-\dfrac{1}{sin^2\left(x\right)}\)